
An Alldifferent Constraint Solver in SMT

Milan Banković and Filip Marić
Faculty of Mathematics, University of Belgrade

(milan|filip)@matf.bg.ac.rs

May 16, 2010

Abstract

The finite domain alldifferent constraint, requiring that all given
variables have different values, is one of the fundamental global con-
straints in constraint programming (CP). Many filtering algorithms
for alldifferent have been developed and successfully used in CP.
Combining these with state-of-the-art SAT solvers is a promising re-
search direction. Support for alldifferent within SMT solvers can
make them suitable for solving constraint satisfaction and optimization
problems. We formulate alldifferent as a first order theory and de-
scribe a DPLL(T ) solver for it. The solver relies on Régin’s filtering
algorithm but introduces a novel algorithm for explaining propagations
and conflicts. A prototype implementation has been made and tested
on large Sudoku instances with encouraging preliminary results.

1 Introduction

In recent years, integration of techniques used in constraint programming
(CP) with satisfiability (SAT) solving has been proposed as a very promis-
ing research direction, since it can employ good sides of both ([5]). On one
hand, CP includes specialized algorithms that are well adapted to particu-
lar constraints of interest, and on the other hand, modern SAT solvers use
sophisticated techniques and strategies during the search process and in-
corporate efficient implementation techniques and data structures. Detailed
survey of CP can be found in [17] and of SAT solving in [4].

One of the most important and best studied global constraints in CP
is the alldifferent constraint. It is a global constraint defined over some
finite set of variables requiring that all its variables take different values
from their finite domains. Many combinatorial problems can be expressed
in terms of alldifferent. Its wide application area includes puzzle solving,
scheduling, combinatorial design problems, etc. Various solving techniques
have been developed and they usually include different forms of consistency
maintaining (domain filtering), constraint propagation, and search.

1



One possible way of integration of CP and SAT is to express a global
constraint as a first order theory, and then use Satisfiability Modulo Theory
(SMT) checking. In this paper we apply this approach to the alldifferent
constraint. The alldifferent constraint is formulated as an SMT theory
and a decision procedure for it, based on the DPLL(T ) framework ([13]), is
developed. The procedure relies on a well-known filtering algorithm intro-
duced by Régin ([16]). However, the algorithm is extended with a novel con-
flict and propagation explaining procedure, which is our main contribution.
In this paper we focus on developing a solver for theories involving single
alldifferent constraints — problems that involve multiple alldifferent
constraints can be handled by combining several such solvers (which is, for
example, the case in our experimental evaluation). We do not discuss algo-
rithm correctness here, but it is covered in the draft longer version of the
paper (http://www.matf.bg.ac.rs/∼milan/smt2010/).

Related work. Different forms of consistency maintaining for alldifferent
were considered and filtering algorithms based on these have been practically
applied in constraint solving ([10]). The first complete algorithm for solv-
ing finite-domain alldifferent that maintaines generalised arc-consistency
was developed by Régin 1994. ([16]). Much effort is currently being invested
in implementation efficiency of these algorithms ([9]). There were also some
efforts in extending them with explanation generating facilities ([8]).

The alldifferent over infinite or very large domains is also considered
([14]). For instance, an extension of SAT that maintains the alldifferent
constraint over bitvectors is described in [3], but the procedure does not
perform constraint propagation.

Combining finite-domain alldifferent with SMT was recently listed as
one of the challenges in modern SMT solving ([12]), introducing the need for
extending procedures used for the alldifferent in constraint programming
(e.g. Régin’s algorithm) with the procedures for generating explanations. As
we are aware of, this idea was not yet employed in SMT and no DPLL(T )
compliant decision procedure has been published yet.

Outline of the paper. In Section 2, the alldifferent constraint and
SMT solvers based on the DPLL(T ) architecture are described. In Sec-
tion 3 the alldifferent theories, i.e. first order theories expressing single
alldifferent constraints are introduced. In Section 4 our DPLL(T ) solver
for an alldifferent theory is described (conflict detection is addressed in
Section 4.1, theory propagations in Section 4.2, and our novel algorithm for
conflict and propagation explaining in Section 4.3). Section 4.4 considers
combining multiple alldifferent theory solvers into one composite solver
for problems involving more than one alldifferent constraints. Our im-
plementation and its experimental evaluation are described in Section 5.
Conclusions and some possible directions for further work are given in Sec-
tion 6.

2



2 Background

The alldifferent constraint.

Definition 1. Let x1, . . . , xn be variables with respective finite domains
D(x1), . . . , D(xn). Then,

alldifferent(x1, . . . , xn) = {(d1, . . . , dn) | di ∈ D(xi), di 6= dj for i 6= j}

Many CSP problems can be expressed in terms of alldifferent con-
straints. For example, the well-known Sudoku problem (for a dimension n)
can be represented using alldifferent by introducing a variable xij for
each row i and column j of the n2×n2 grid. Each variable takes values from
the domain D = {1, 2, . . . , n2} and the equality xij = d holds iff the field
(i, j) on the grid is filled with a value d. The set of constraints is:

for each i ∈ {1, . . . , n2}, alldifferent
{
xi,j | j ∈ {1, . . . , n2}

}
for each j ∈ {1, . . . , n2}, alldifferent

{
xi,j | i ∈ {1, . . . , n2}

}
for each i, j ∈ {1, . . . , n},

alldifferent
{
xn·(i−1)+k,n·(j−1)+l | k, l ∈ {1, . . . , n}

}
for each given (ik, jk, dk), xik,jk

= dk

SMT solvers and the DPLL(T ) approach. The Satisfiability Modulo
Theory (SMT) problem is a decision problem for logical formulas with re-
spect to a background theory expressed in classical first-order logic with
equality. Due to the lack of space, in this paper we do not define the basic
notions of first order logic, but we assume the syntax and semantics used in
[4]. The DPLL(T ) architecture ([13]) is the dominant architecture of mod-
ern SMT solvers. A DPLL(T )-based SMT solver consists of a DPLL-based
SAT solver that searches for propositional models satisfying a given formula
and a theory solver (T -solver) which is a specific decision procedure that
checks for T -satisfiability of the found (partial) propositional models. A
theory solver usually should have the following functionality:

asserting and backtracking The solver must be able to assert and back-
track literals in a stack-like fashion (the stack is called the trail).

conflict detection The solver must be able to check the T -satisfiability of
conjunctions of asserted literals (incrementally, if possible).

conflict explanation If the conjunction of asserted literals is T -unsatisfi-
able, the solver should be able to find a (preferably small) subset of
asserted literals that is also T -unsatisfiable.

theory propagation The solver should be able to find literals (from some
fixed set) that are T -consequence of the conjunction of asserted literals.

propagation explanation If a literal l is a T -consequence of the conjunc-
tion of asserted literals, the solver should be able to find a (preferably
small) subset of asserted literals that also T -entails l.

3



3 The theory of alldifferent

In this section first order theories for alldifferent constraints are intro-
duced. Consider the alldifferent problemAD: alldifferent(x1, . . . , xn),
where xi ∈ D(xi), and D =

⋃n
i=1 D(xi). For this problem instance, a first-

order theory TAD is defined. The language ΣAD of TAD consists of constant
symbols xi introduced for each variable xi and di introduced for each value
di ∈ D. All ΣAD atomic formulae are ground equalities over constants from
ΣAD. The theory consists of all models satisfying the following axioms:

• Axioms of sanity : di 6= dj , for each two different constant symbols
di and dj . These axioms ensure that different constant symbols for
values of D represent different values from the variable domains.

• Domain axioms:
∨

d∈D(x) x = d for each variable x ∈ X . These axioms
define domains of the variables. The meaning of the equality x = d is
that x takes the value d in the corresponding solution of AD.

• Axioms of difference: xi 6= xj , for each i and j, where 1 ≤ i < j ≤ n.
These axioms ensure that the alldifferent constraint is satisfied.

Models M∈ TAD directly correspond to solutions of the problem AD.

4 A solver for alldifferent

In this section, a DPLL(T ) solver for TAD is presented. The solver is based
on the reduction of alldifferent constraint to the matching problem in bi-
partite graphs. Conflict detection is reduced to constructing optimal match-
ing which is done using the Hopcroft & Karp’s algorithm [11]. Theory prop-
agation detection is done using the Régin’s algorithm [16]. However, for
conflict and propagation explaining we present our novel approach based on
the minimal obstacle set problem, also introduced in this paper.

4.1 Conflict detection

A bipartite graph B = (U, V,E) is a graph consisting of the set of left vertices
U , the set of right vertices V (disjoint with U) and the set of edges E ⊆
U × V . A matching in a bipartite graph B is a set of edges M ⊆ E such
that no two edges from M have a vertex in common. The matching M is
optimal if there is no matching of greater cardinality. A matching M is a
covering matching for U if every vertex u ∈ U is matched with some vertex
from V . A vertex is free if it is not matched with any vertex at the opposite
side. The sets of free vertices from U and V will be denoted by free(U) and
free(V ) respectively.

The constraint alldifferent(x1, . . . , xn) can be assigned a bipartite
graph B = (U, V,E) (called its value graph) such that U contains one vertex

4



vx for each variable x ∈ {x1, . . . , xn}, and V contains one vertex vd for each
value d ∈

⋃n
i=1 D(xi). The edge (vx, vd) belongs to E iff d ∈ D(x) (each

variable is connected to the values from its domain).
The following proposition (given without a proof) establishes the

correspondence between covering matchings in B and solutions of the
alldifferent and implies that the alldifferent constraint is satisfiable
if and only if there is a covering matching in its value graph.

Proposition 1. A tuple (d1, . . . , dn) satisfies alldifferent(x1, . . . , xn) iff
M = {(vxi , vdi) | 1 ≤ i ≤ n} is a covering matching in its value graph B.

Therefore, the alldifferent problem is reduced to the optimal matching
problem in the corresponding bipartite value graph. Indeed, if the cardi-
nality of a constructed optimal matching is equal to n, then the matching
is also a covering matching and it determines a solution satisfying the con-
straint. Otherwise, there are no covering matchings and, thus, the constraint
is unsatisfiable.

An optimal matching in a bipartite graph can be constructed by starting
from some existing (non-optimal) matching M (possibly empty) and incre-
mentally extending it using augmenting paths until an optimal matching is
obtained. For a bipartite graph B with a matching M an alternating path
is a path that consists of edges that alternately belong to M and E \M. An
augmenting path is an alternating path that begins at a free vertex on one
side of the graph and ends at a free vertex on the other side. Augmenting
paths can be detected by some BFS-based procedure applied to the directed
graph directed(B, M), obtained from the original graph B by orienting edges
of M from left to right, and edges of E \M from right to left. Each augment-
ing path can be used to increase the cardinality of the current matching by
one — the current matching is replaced by its symmetric difference with
the augmenting path. The matching is optimal if and only if there are no
augmenting paths in B (a proof of this can be found in [10]). The runtime of
the procedure depends on the difference between the number of edges in the
initial matching and in the obtained optimal matching. Therefore, the pro-
cedure will run faster if the initial matching is close to optimal. This makes
the procedure suitable for incremental applications. An improvement of the
described procedure is the well-known Hopcroft & Karp’s algorithm ([11])
that finds multiple disjoint augmenting paths in a single graph traversal.

In the context of the TAD-solver, the algorithm explained above can be
used for conflict detection. Assume that M is the set of currently asserted
literals. First, the value graph B must be synchronized with M , i.e., for each
literal l ∈ M , all edges from B that conflict with l should be removed (if
l ≡ x 6= d, the edge (vx, vd) is removed, if l ≡ x = d, all edges (vx, vd′) where
d′ 6= d are removed). Next, an optimal matching M is constructed. The set
M is TAD-satisfiable iff the matching is covering. The conflict check can be
done incrementally — whenever some additional literals are asserted, edges

5



conflicting with those are removed and the optimal matching is only repaired
(if necessary) and not constructed from scratch, which is significantly faster
due to the nature of the used algorithm.

4.2 Theory propagation

Once a covering matching M is found, it can be used for detecting edges that
belong to all covering matchings (vital edges) or edges that do not belong
to any covering matching (inconsistent edges). These edges are used for
the theory propagation. Edges that belong to some, but not all optimal
matchings are called alternating edges.

Inconsistent edges should be removed from the value graph, since they
are not part of any covering matching (and, therefore, their corresponding
equalities are not a part of any solution). Removal of such inconsistent
edges is called filtering. When all inconsistent edges are filtered out, the
constraint is hyper-arc consistent. Vital edges must not be removed from
the graph, since they are a part of every covering matching (and, therefore,
their corresponding equalities are a part of every solution).

Detecting vital and inconsistent edges can be reduced to detecting alter-
nating edges. Namely, each edge that is not alternating is vital if it belongs
to the already constructed optimal matching (because it then belongs to all
optimal matchings) and is inconsistent otherwise. The following Theorem
1 (a proof can be found in [2]) gives a characterization of alternating edges
that can be used for their detection.

Theorem 1. Let B be a bipartite graph with a covering matching M. An
edge is alternating iff it either belongs to some simple alternating path of an
even length that starts at some free right vertex, or it belongs to some simple
alternating cycle of an even length.

The premises about the even length of paths and cycles are not crucial
since every alternating cycle in a bipartite graph is of an even length and ev-
ery simple alternating path starting at a free right vertex can be extended an
even length (providing M is covering). Therefore, it is sufficient to consider
arbitrary alternating paths and cycles.

Alternating edges can be found by Régin’s filtering algorithm [16], which
relies directly on the Theorem 1 (and, thus, requires a covering matching
in B). Alternating paths in B are found by a BFS traversal of the graph
directed(B, M) starting from free(V ). All edges beloning to those paths
are alternating. Alternating cycles are detected by finding the strongly con-
nected components of directed(B, M). A strongly connected component in a
directed graph is a maximal subset of vertices such that its every two ver-
tices are mutually reachable. All edges with their both vertices belonging
to the same strongly connected belong to some alternating cycle. Strongly
connected components can be found by Tarjan’s DFS-based algorithm ([18]).

6



In the context of the TAD-solver, the explained algorithm can be used for
exhaustive theory propagation. Assume that the value graph B is already
synchronized with the set of asserted literals M and that no conflict is
detected (i.e., the constructed matching M is covering). After the execution
of the Régin’s filtering algorithm, each inconsistent edge (vx, vd) is removed
from the value graph B and the disequality x 6= d is propagated, since x
cannot be equal to d in any solution for the current graph B (thus, M �TAD
x 6= d). For each vital edge (vx, vd) the equality x = d is propagated, since x
is equal to d in every solution for the current graph B (thus, M �TAD x = d).

4.3 Conflict and propagation explaining

Our explanation generating procedure is based on reduction to a graph prob-
lem that we call the minimal obstacle set problem introduced in the following
paragraph along with an algorithm which can be used for its solving.

Minimal Obstacle Set (MOS) Problem. Let G = (V,E) be a directed
graph, with a set of final vertices F ⊆ V and a set of obstacles O ⊆ E.
We say that O separates the vertex v ∈ V from F if every path from v to
any vertex f ∈ F contains at least one edge from O. We also say that the
vertex v ∈ V is blocked (or O-blocked). If a vertex is not blocked, it is called
unblocked (or O-unblocked). The set of vertices W ⊆ V is O-blocked if each
vertex w from W is O-blocked (in this case we also say that O separates W
from F ). Otherwise, W is O-unblocked. The path that contains no obstacles
from O is called an obstacle-free (or O-free) path.

The minimal obstacle set (MOS) problem is defined as follows: given a
set of start vertices S ⊆ V that is O-blocked, find an obstacle set Omin ⊆ O
such that S remains Omin-blocked and Omin is minimal in sense of inclusion.
Such obstacle set is called a minimal obstacle set.1 It is clear that such set
does not have to be unique.

The algorithm for solving the problem is based on the following theorem.

Theorem 2. A set of obstacles O is minimal if and only if for each obstacle
e = (v, w) ∈ O the vertex v is reachable from S via some obstacle-free path
and the vertex w is unblocked.

Proof. Suppose that O is a minimal obstacle set. We prove that for each
edge e = (v, w) ∈ O the vertex v is reachable from S via some O-free path,
and that the vertex w is O-unblocked. Assume the opposite, i.e., assume
that for some edge e ∈ O there is either no O-free path from vertices of
S to v, or there is no O-free path from w to vertices of F . Then the set
O′ = O \ {e} also separates S from F , since there is no O′-free path from S
to F . This contradicts that O is minimal.

1An obstacle set O that separates W from F is actually a cut in G such that vertices
from W and F are at the opposite sides of the cut. The minimal obstacle set problem can
be understood as finding a sub-cut of a given cut that is minimal in the sense of inclusion.

7



Next, suppose that for each edge (v, w) ∈ O the vertex v is reachable from
S via some obstacle-free path and the vertex w is unblocked. We prove that
O is a minimal obstacle set. Assume the opposite, i.e., assume that some
O′ ⊂ O also separates S from F . Then, there is an edge e = (v, w) ∈ O \O′

such that v is reachable from some u ∈ S via an O-free path, and some
vertex f ∈ F is reachable from w via an O-free path. Therefore, since
e /∈ O′, there is an O′-free path from u ∈ S to f ∈ F . This contradicts the
fact that O′ separates S from F .

In the first stage of the algorithm, the the set Or ⊆ O composed of
obstacles e = (v, w) ∈ O such that v is reachable (via an O-free path) from
S is constructed. This can be done by BFS traversal starting from the
vertices of S. The set Or also separates S from F .

In the second stage, the the set Omin of all obstacles e = (v, w) ∈ Or such
that the vertex w is Or-unblocked is constructed. For this purpose, it suffices
to find the set Vu ⊆ V containing all Or-unblocked vertices. Consider the
strongly connected components of G, by using only Or-free paths (i.e. with
the set of edges E \Or). For each component W from G it hold that if one
of its vertices is Or-unblocked, then all its vertices are Or-unblocked (due to
mutual reachability of vertices from the same component). In other words,
being Or-unblocked is a property of a component, not of a vertex itself.
Therefore, the set Vu can be found by the DFS-based procedure similar
to the Tarjan’s algorithm for finding strongly connected components [18].
There are two main differences. First, the connectivity assumes using only
Or-free paths. Second, the algorithm does not return strongly connected
components but returns the set Vu consisting of the following vertices:

• vertices from F (since final vertices are trivially Or-unblocked),
• vertices v such that an edge (v, w) /∈ Or is reached during the traversal

and w is already in Vu,
• all vertices of strongly connected components with their roots2 already

belonging to Vu.

Finally, an obstacle e = (v, w) ∈ Or is added to Omin iff w ∈ Vu. Ac-
cording to Theorem 2, such obstacle set Omin is minimal.

Using MOS for finding explanations. Propagation explaining can be
reduced to the MOS problem in the following way. Assume that M is the
set of asserted literals such that M �TAD l and M 2TAD ⊥ (M consists of
asserted literals at the point when TAD-entailment of a literal l is detected by
the Régin’s filtering algorithm). Assume also that the value graph initially
assigned to the alldifferent constraint is denoted by Binit and that the
value graph after its synchronization with M is denoted by Bcurr. The set of

2The root of a strongly connected component W is the vertex from W first visited
during the traversal. See [18] for details.

8



edges removed during the synchronization with M is denoted by Erm. Since
M 2TAD ⊥, there is a covering matching M in Bcurr (we can assume the
same covering matching M in Binit, because it is a superset of Bcurr). Since
M �TAD l and ∅ 2TAD l, the edge e corresponding to l is alternating in Binit

and is vital or inconsistent in Bcurr. According to Theorem 1, each simple
alternating path in Binit that starts at a free right vertex and that contains
e also contains an edge from Erm. The same holds for alternating cycles in
Binit containing e. Assume that G = directed(Binit, M), and that (u, v) is
the directed edge in G that corresponds to e in Binit. The vertex u is now
reachable in G from free(V ) or from v only via paths that contain at least
one edge from Erm. In terms of the MOS problem, the set of start vertices
S = free(V )∪{v} is separated from the set of final vertices F = {u} by the
set of obstacles O = Erm. Assume that the algorithm for the MOS problem
returns the set Omin. The explanation of l is the subset of literals from M
that caused the removal of edges from Omin during synchronization. Such
explanation is minimal in the sense of inclusion.

When conflict explaining is concerned, assume that M is the set of as-
serted literals at the point when conflict is detected (M �TAD ⊥) and that M
is an optimal non-covering matching found in Bcurr. If the theory is consis-
tent (i.e., ∅ 2TAD ⊥), then the matching M can be augmented in Binit, but
this cannot be done in Bcurr. This means that each augmenting path in Binit

contains at least one edge from Erm. In terms of the MOS problem, the start
vertices S = free(V ) are separated from the final vertices F = free(U) in
the graph G = directed(Binit, M) by the obstacle set O = Erm. Assume
that the algorithm for the MOS returns the set Omin. The explanation for
the conflict is the set of literals from M that caused the removal of edges
from Omin during synchronization.

4.4 Combining multiple alldifferent constraints

The described solver considers only the theory defined in Section 3, with only
one alldifferent constraint involved. The case of multiple alldifferent
constraints can be handled by combining separate theories (one theory per
constraint) with overlapping signatures using the approach similar to De-
layed Theory Combination [6]. One TAD solver is instantiated for each
alldifferent constraint and they are combined into one composite solver
that acts like a proxy — it establishes the communication between TAD
solvers and the underlying SAT solver by delegating the interface calls to
appropriate TAD solver(s). TAD solvers do not communicate with each other
directly, but only via the SAT solver.

9



5 Implementation and Experimental Evaluation

The alldifferent solver described in this paper is implemented in our sys-
tem argoalldiff3 (implemented in C++). The system uses our SAT solver
argosat. All presented algorithms are fully implemented, with some addi-
tional optimizations — for instance, a layered approach is used, detecting
some trivial conflicts and propagations by lighter procedures before calling
expensive algorithms here presented (their calls are delayed until necessary).

The preliminary experimental evaluation was performed on a set of ran-
domly generated Sudoku instances and Table 1 presents the results for 200
instances of dimension 5 (i.e., 25 × 25 boards). The boards are randomly
generated with around 40% fields filled in — Sudoku exhibits phase transi-
tion and these boards tend to be the hardest ones. We have compared our
system with several alternative approaches:

1. the constraint solver Minion ([7]);

2. our SAT solver argosat, using a naive direct encoding where
alldifferent is encoded by quadratic number of clauses encoding
pairwise disequalities;

3. the SMT solver yices (http://yices.csl.sri.com/), where
alldifferent is encoded using the distinct predicate of SMT-LIB
([15]);

4. the SMT solver yices, using encoding in the theory of equality with
uninterpreted functions (EUF) where alldifferent(x1, . . . , xn) is en-
coded by introducing a fresh uninterpreted function symbol f and the
constraint f(x1) = 1 ∧ . . . ∧ f(xn) = n.

5. the modified version of argoalldiff which does not use our MOS
explanation procedure, but always uses the full trail for explanations.

Each solver was given 120 seconds for each instance. Obtained results
are shown in Table 1 and indicate that argoalldiff shows the best overall
performance. It is worth mentioning that minion failed to solve some in-
stances (solved by argoalldiff within 120 seconds) even if the cutoff time
is increased to 30 minutes.

Next several statistics can be used to indicate effectiveness of our pro-
cedures. Average number of conflicts per instance was around 460 with
argoalldiff, and around 33000 with argosat. This shows that, although
advanced alldifferent algorithms take much more time then efficient
SAT conflict detection and propagation procedures (based on so called two-
watched literal scheme), the reduction in the search space is so big that it

3The system is available under GNU/GPL license on http://argo.matf.bg.ac.rs.

10



Solver Solved instances
Average time

on solved instances
argoalldiff (with expl.) 194 8.8s

minion 174 10s
argosat 172 18s

argoalldiff (without expl.) 169 18s
yices (using distinct) 0 -

yices (using EUF) 0 -

Table 1: Experimental results for Sudoku instances. All experiments were
performed on Intel Pentium Dual Core T3200 2.00GHz, with 2GB RAM.

pays off to employ heavy filtering algorithms. The number of theory prop-
agations was around 69000. Average size of explanation clauses for theory
propagations was around 110 and for conflicts around 51. This can be com-
pared to the version of argoalldiff that does not use our MOS explanation
procedure — the average size of explanation clauses for theory propagations
was around 590, and for conflicts was around 410. This shows that our
explanation procedure reduces the explanation size to around 27% in the
propagation explanation case, and to only 9% in the conflict explanation
case. What is also important, profiling shows that most runtime is spent in
the Hopcroft & Karp’s and Régin’s algorithm, and the MOS conflict expla-
nation procedure takes less then 3% of the overall runtime.

6 Conclusions and Further Work

We have formulated the alldifferent constraint as an SMT theory and de-
veloped a DPLL(T )-based solver for it. The decision procedure relies on the
Régin’s filtering algorithm. However, the main contribution of our work is a
novel conflict and propagation explanation procedure. The preliminary ex-
perimental results are very encouraging since our prototype implementation
is much better of existing ways of encoding the alldifferent constraint in
SMT (e.g., in the EUF theory) and it also outperforms minion— one of the
leading CSP solvers for alldifferent.

Our major future plans are to further improve the implementation of
our system by incorporating techniques suggested in [9] and apply it to
some real-world optimization problems (e.g., course timetabling).

References

[1] C. Barrett. R. Sebastiani. S. A. Seshia. C. Tinelli. Satisfiability Modulo
Theories. Handbook of Satisfiability. 2009.

11



[2] C. Berge. Graphe et Hypergraphes. Dunod. 1970.
[3] A. Biere. R. Brummayer. Consistency checking of all different con-

straints over bit-vectors within a SAT solver. FMCAD. 2008.
[4] A. Biere. M. Heule. H. van Maaren. T. Walsh. Handbook of Satisfiability.

IOS Press. 2009.
[5] L. Bordeaux. Y. Hamadi. L. Zhang. Propositional Satisfiability and

Constraint Programming: A Comparative Survey. ACM Comput. Surv.
38 (4). 2006.

[6] M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, S. Ranise, P. van
Rossum, R. Sebastiani. Efficient Satisfiability Modulo Theories via
Delayed Theory Combination. CAV. LNCS 3576. 2005.

[7] I. Gent, C. Jefferson, I. Miguel. MINION: A Fast, Scalable, Constraint
Solver. ECAI 2006. 2006.

[8] I. Gent. I. Miguel. N. Moore. Lazy Explanations for Constraint Prop-
agators. PADL. LNCS 5937. 2010.

[9] I. Gent. I. Miguel. P. Nightingale. Generalised arc consistency for the
AllDifferent constraint: An empirical survey. Artificial Intelligence
172(18). 2008.

[10] W. van Hoeve. The Alldifferent Constraint: A Survey. 6th Annual
Workshop of the ERCIM Working Group on Constraints. 2001.

[11] J. E. Hopcroft. R. M. Karp. An n5/2 algorithm for maximum matchings
in bipartite graphs. SIAM Journal on Computing 2 (4). 1973.

[12] R. Nieuwenhuis. A. Oliveras. E. Rodriguez-Carbonell. A. Rubio. Chal-
lenges in Satisfiability Modulo Theories. Term Rewriting and Applica-
tions. LNCS 4533. 2007.

[13] R. Nieuwenhuis. A. Oliveras. C. Tinelli. Solving SAT and SMT from
abstract Davis–Putnam–Logemann–Loveland Procedure to DPLL(T ).
Journal of the ACM. 53(6). 2006.

[14] C. Quimper. T. Walsh. Beyond Finite Domains: The All Different and
Global Cardinality constraints. In 11th CP. LNCS 3709. 2004.

[15] S. Ranise, C. Tineli. The SMT-LIB Standard. http://goedel.cs.
uiowa.edu/smtlib/

[16] J. Régin. A filtering algorithm for constraints of difference in CSPs.
12th AAAI. 1994.

[17] F. Rossi. P. van Beek. T. Walsh. Handbook of Constraint Programming.
Elsevier. 2006.

[18] R. Tarjan. Depth-first search and linear graph algorithms. SIAM Jour-
nal of Computing. 1972.

12


