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Abstract. Evaluating improvements to modern SAT solvers and com-
parison of two arbitrary solvers is a challenging and important task.
Relative performance of two solvers is usually assessed by running them
on a set of SAT instances and comparing the number of solved instances
and their running time in a straightforward manner. In this paper we
point to shortcomings of this approach and advocate more reliable, sta-
tistically founded methodologies that could discriminate better between
good and bad ideas. We present one such methodology and illustrate its
application.

1 Introduction

Many SAT solvers have been developed and various improvements to them have
been proposed over the years, especially in the domain of heuristic components.
Solver comparisons as a method for detecting good ideas are widely recognized in
the SAT community. This is the main purpose of competitions of SAT solvers.!
Their importance is growing, especially because of the significant number of
new ideas and solvers that appear each year. Nevertheless, main responsibility
for evaluation of new ideas is on the researchers themselves.

In order to assess the quality of a proposed modification, one usually runs a
modified and the base version of the solver on some set of SAT instances. The
solver that solves more instances, or the same number of instances in less time
is considered to be better. This approach can be flawed because solving times
of instances can significantly vary depending only on trivial properties of the
formula like ordering of clauses and literals, or on random seeds used, which can
lead to different experimental results by chance.

We performed experiments to investigate this claim. Four solvers were chosen
from the MiniSAT hack track of the SAT 2009 competition — the first, the last,
the baseline and one of the medium performance according to the results of
the track.? We used two benchmark sets. The first consisted of 292 industrial
instances used at the MiniSAT hack track and the second of 300 graph coloring
instances from the SAT 2002 competition. Each solver was run on 50 shuffled
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variants of each benchmark (obtained by reordering the clauses, literals in each
clause, and renaming the variables) with cutoff time of 1200 seconds.

First we checked how much the number of solved formulae can vary. A solver
was "lucky” if for each formula it was given the shuffled variant that it solves in
the shortest time. The solver was ”unlucky” if for each formula it was given the
shuffled variant that it solves in greatest time (unsolved if such variant exists).
For each benchmark set and each solver, results for both the ”lucky” and the
”unlucky” case are presented in Table 1. For industrial formulae, the number of
formulae solved in their original form is also given. The graph coloring instances
were already shuffled, so we don’t give such information for them. One can see
from the table that the variation of the number of solved formulae can be large.

Industrial Graph coloring
Solver Lucky|Original |Unlucky|Lucky|Unlucky
MiniSAT 09z 161 142 111 180 157
minisat_cumr r| 156 139 107 190 180
minisat2 141 121 93| 200 183
MiniSat2hack 144 121 93| 200 183
Table 1. Number of solved instances for ”lucky” and ”unlucky” case of each solver.

Second, we investigated the effect of this variation on solver comparison. We
checked that for each two solvers, on the industrial instances it is possible to
suitably select shuffled variants of each instance to make one benchmark set
on which the first solver is better than the second, and another on which the
second is better than the first (in this case, both solvers are run on the same
shuffled variant of each formula). However, the probability of such event should
be also taken into the consideration. For each pair of solvers we performed 10000
simulated pairwise comparisons with shuffled variants chosen on random for each
formula in order to estimate the probabilities of each solver in the comparison
being the winner. For most of the pairs, changing the outcome of the comparison
turned out to be very unlikely. However, when comparing MiniSAT 09z and
minisat cumr r on industrial instances the odds of winning are 92% to 8%,
when comparing minisat2 and minisat2hack on industrial instances the odds are
6% to 94%, and when comparing minisat2 and minisat2hack on graph coloring
instances the odds are 74% to 26%. It is interesting to notice that on industrial
instances, the solver that appears to be the best, can be beaten in practice as a
result of chance. Also, ordering of minisat2 and minisat2hack would be different
from the one obtained at the competition in most of the cases.

Sometimes the use of shuffling is disputed. Its use is not essential for the
methodology that will be proposed. The purpose of shuffling is to make a solver
choose different paths of the solving process on different runs, and thus obtain
information about its runtime distribution. Such an effect could also be achieved
without shuffling by changing the random seed the solver uses, and we certainly
don’t prefer some random seeds to the others. We also performed the similar



experiment with random seeds instead of shuffling. The ”lucky version” of Min-
iSAT solved 144 instances, and the ”unlucky” one solved 96, which is close to the
results obtained by shuffling. Note that the use of randomization is a common
practice in modern SAT solvers.

In addition to the problem just discussed, there is a problem of drawing
conclusions from the available experimental results. Sometimes, the results are
presented by tables showing that the new SAT solver is performing better than
the base one on some subsets of instances, and worse on the others, without clear
conclusion about the overall effect. Also, SAT solver comparisons are concluded
without discussion if the observed differences could be obtained by chance or are
a consequence of a genuine effect.

The goal of this work is the formulation of statistically founded methodol-
ogy of SAT solver comparison that would 4) eliminate chance effects from the
results, i) give an answer if there is a positive (or negative) overall effect of the
proposed modification to SAT solver performance, and ii) give an information
of statistical significance of that effect. Such a methodology would enable more
reliable discrimination between good and bad ideas, enabling the community to
focus on the more promising ones.

There are several issues that have to be addressed in devising such method-
ology. The first is a presence of censored data. If the formula is not solved in
a given cutoff time, it is only known that it needs more time to be solved, but
not how much exactly. The second is a need to compare runtime distributions
instead of single solving times that are unreliable. The third issue is finding a
way to combine conclusions for different formulae to derive an overall conclusion.

The methodology we propose was conceived for detection of improvements
over some base solver, but it can be used without limitation to comparison of two
arbitrary solvers. Also, it will be shown how it can be extended for ranking of
several solvers. This methodology is not concerned with selection of benchmarks.
One should choose the benchmarks representative for the problems of interest.

The rest of the paper is organized as follows. In Sect. 2, a brief information
on relevant concepts and techniques is given. The proposed methodology is de-
scribed in Sect. 3 and the experimental results are given in Sect. 4. In Sect. 5,
related work is discussed. In Sect. 6 final conclusions are drawn and some di-
rections of possible further work are pointed to. In the appendix, a proof of the
theorem from Sect. 3 is given.

2 Preliminaries

In this section we describe concepts and techniques important for understanding
the proposed methodology and introduce needed notation.

2.1 Distributions of Solver Running Times

It is well known that solving times for a propositional formula can vary substan-
tially from one solver run to another if the solver uses some random decisions



during its work. Also, solving times can change substantially if a syntactical
representation of the formula is changed. Distributions of these solving times
have been a subject of intensive study [GSCKO00,FRV97], resulting in important
theoretical insights and understanding of randomized restarts. A runtime distri-
bution of a solver on some instance bears much more information about solver
performance than a single run, but it is considerably more expensive to obtain.

2.2 Statistical Hypothesis Testing and the Notion of the Effect Size

Statistical hypothesis testing is concerned with determining if a proposed hy-
pothesis about some populations hold, based on sample data from those pop-
ulations. The test is performed by trying to reject the null hypothesis Hy. Hy
is usually a statement of “no effect” claiming that the effect considered is not
present in the populations.

In order to test if Hy holds, one computes a value t of some test statistic T’
(depending on the purpose and formulation of the test) with a known probability
distribution. The probability of obtaining the computed or more extreme value
of the statistic, assuming that Hy is true, is called a p value. If the p value is
less than some predetermined threshold « (usually 0.05), the observed event is
considered to be too improbable to be observed if Hy holds, and the hypothesis
Hy is rejected. Such a result is said to be statistically significant at the level c.
Otherwise (p > «), one cannot reject the hypothesis Hp.

The smaller the p value, the greater the confidence that the observed effect is
not obtained by chance. Nevertheless, a small p value is not enough to conclude
that the effect is large, because it depends both on the size of the effect and the
sample size. Even if the effect is statistically highly significant, it can still be too
small to be of any practical importance. In order to measure the magnitude of the
underlying effect, an effect size has to be computed. There are several standard
effect size statistics [Ros91,GK05]. One, commonly used when comparing two
samples, is a point biserial correlation (often referred to as Pearson’s r) [Ros91].

2.3 Point Biserial Correlation

Point biserial correlation p,, between two random variables is the correlation
between their outcomes and an indicator variable with value 1 for outcomes of
the first random variable, and value —1 for the outcomes of the other. Its sample
estimate 7 is calculated by the formula:

YL (X = X) (Y - Y)
Tpb =
VEN (G - X2 N, (v - T

where X; denote observations from both samples, and Y; are indicator variables.
X and Y are the means of X; and Y;. N is the total number of observations.
Quantities ppy and 7y have values ranging from —1 to +1. Absolute values closer
to 1 mean that the distributions of random variables exhibit better separation.
Values near 0 indicate great overlapping between distributions.




If there is no information about the distribution of the data, the data are
often transformed by ranking — each observation in either sample is replaced by
its rank in the sorted sample. If there are tied (equal) observations, each of them
is assigned the average rank of the ranks that would be attributed to them. The
point biserial correlation calculated on ranked data has different properties to
the original statistic and is an instance of the Spearman correlation coefficient
[DKS51,DM61].

The estimate 7y, is asymptotically normally distributed with the mean ppy.
The variance of 7 is not easy to determine if the ranking is used and if the
distribution of the data is not normal except for the case pp, = 0 [DKS51,DM61].
Nevertheless, it can be estimated by methods like bootstrapping or jackknife
[Efr79,ES81]. The variance of rp, is strongly dependent on value of ppp, and
Tpy is usually used in statistical tests only after the Fisher’s variance stabilizing
transformation z(z) = arctanh(z) is applied [Hot53]. Also, the transformed
variable is much closer to normal distribution than the original one. It has the
mean z(ppp) and its variance can be estimated by var(ry)(1 —72,) 2.

In order to interpret the magnitude of r,,, one can follow commonly ac-
cepted recommendations by Cohen [Coh88] — effects with |rp,| in the inter-
vals [0,0.1), [0.1,0.3), [0.3,0.5), and [0.5,1], are considered respectively, negligi-
ble, small, medium, and large. However, note that these are not strict rules, but
rather, reasonable guidelines.

2.4 Accounting for Censored Data

By censored data we mean data known to be greater than some threshold value,
but of unknown exact value. One well-known test for comparison of two samples
which include censored data is the Gehan test [Geh65]. The statistic used in this
test can be formulated as follows [Man67]. The pooled sample is the sample that
includes elements of both samples that are compared. Note that the repetitions of
elements are possible. Let U; be the number of observations in the pooled sample
than which the ¢-th observation in the pooled sample is strictly greater minus
the number than which it is strictly less. In the case of unique censoring time,
censored observations are treated as equal and greater than all the uncensored
observations.? Then Gehan statistic is defined by

1
W= U
¢ \A1||A2|Z

1€A;

where A; is a set of indices in the pooled sample of the observations from the
j-th sample (j = 1,2). As shown by Gehan [Geh65], using the theory of U
statistics [Hoe48,Leh51], Gehan statistic is a consistent estimate of w = P(X >
Y) - P(X < Y). It is asymptotically normally distributed with the mean w.
The variance of W is easy to calculate if w = 0. In other cases bootstrapping
or jackknife estimates can be used [Efr79,ES81]. As in case of r,, the variance
depends on w, diminishing as w approaches extreme values —1 or 1.

3 In the case of varying censoring times, more sophisticated statistics might be used.



3 The Methodology

An overall idea of the proposed methodology for comparing two solvers is simple.
For each SAT instance from some benchmark set one should calculate suitably
defined difference of performance of two solvers on that instance. If the perfor-
mances of two solvers are approximately the same for the benchmark set, then
the differences on considered instances should mainly cancel out, and the aver-
age of the differences couldn’t be too large. Note that the concept of runtime
distribution is important for our methodology, but in formulation of the method-
ology we leave the sampling mechanism unspecified. The methodology will be
applicable regardless of that choice. First, we outline the methodology, and then,
discuss its various aspects.

3.1 The Outline of the Proposed Methodology

Let random variable 77 represent runtimes of the solver S; (j = 1,2) on SAT
instance F. Since solving times can be too large for practical evaluation, a cutoff
time 7T is used, and thus distributions of random variables 77 are truncated
to the right at the point 7. The difference of SAT solver performances should
be defined by some function 6(7!,72) measuring the suitably chosen difference
between distributions of these variables. Since the random variables themselves
are not available, inferences about them are made using samples of runtimes.
The value of the function ¢ should be approximated by a difference d between
samples. The differences d; of random variables corresponding to formulae F; can
be averaged to obtain a value 6 which measures the overall difference between
solvers on given corpus of formulae. Sample estimate of J, the average of d;
values, will be denoted d. Distribution of the average of d under the hypothesis
6 = 0 will be denoted by ©.

The methodology is outlined in Fig. 1. It can be considered as a statistical
test with the null hypothesis that there is no overall effect — Hy: 6 = 0.

Obviously, in order to use this methodology, its various aspects must be
discussed. The most important ones are the choice of the function d, estimation
of distribution ©, and interpretation of the magnitude of d. We will propose
some choices for each of these aspects.

3.2 Choosing function d

The role of function d is to quantify the difference in performance of two solvers
on one instance based on samples of corresponding solving times. For that we
use effect size measures for difference between two samples. Three possible effect
size measures will be introduced, and their relations will be analyzed.
Probably the most intuitive indicator of two solvers performing equally on
some instance I would be that the probability that the first solver solves the
instance in more time than the second solver is equal to the probability that



— INPUT: Solvers S; and S>, and the set of benchmark instances
— OUTPUT: Information if one solver is better than the other and estimate of
the effect size
— Choose the level of statistical significance a (a < 1)
— For each formula F; from corpus F consisting of M instances:
e Take a sample T7 of size N of random variable 7/ (j = 1,2)
e Calculate the difference d; = d(T}}, T}?) between obtained solving times
— Calculate the average d of values d;
— Estimate © — the distribution of d under the null hypothesis
— Calculate the p value for d according to the distribution ©
—Ifp<a
e Declare the first solver to be better if d < 0
o Declare the second solver to be better if d > 0
e Report d as the estimate of the magnitude of the difference between
performances of two solvers
— otherwise, declare the difference insignificant

Fig. 1. Outline of the proposed methodology.

the second solver solves the instance in more time than the first solver. More
formally
P(T1 > 7'2) = P(T1 < 7'2)

or equivalently
w=P(rt>7)-P(r' <) =0

where 77 is a random variable representing solving times of the solver S; on
instance F. These two probabilities need not sum to 1 in case that censored
data are present. In that case
= 1mw P(rt <)+ 1P(T1 =7?)
2 2

which is a quite intuitive measure that combines the evidence of one solver per-
forming better than the other with the uncertainty that appears if both solvers
haven’t solved the same benchmarks. Namely, the case 7! = 72 is possible only
for censored observations since, practically, all uncensored solving times differ
even slightly if measured with enough precision. The value 7 is a known effect
size measure [GK05]. Recall that w is estimated by W and 7 is estimated by
(1 — W¢)/2. Drawback of using w or 7 is a lack of variance stabilizing transfor-
mation like the one available for the point biserial correlation (see Sect. 2).

Point biserial correlation pp;, is a commonly used and well understood effect
size measure (as described in Sect. 2). It is estimated by . Since there is no
information about distribution of the data, estimate should be calculated on
ranked data (see Sect. 2). Technical advantage of using this measure is avail-
ability of Fisher’s transformation which stabilizes the variance and makes the
distribution closer to normal. This makes determining statistical significance
much more reliable. On the other hand, it is not obvious if this measure makes



sense with censored data. Also, without prior experience with this measure, one
might feel uncomfortable interpreting its magnitude.

To establish a relation between estimates of technically more suitable ppy,
and more intuitive w and 7w, we present the following theorem, showing that
all three can be used interchangeably (the proof is given in the appendix). For
observations X; of a random variable X, by S% we denote Y (X; — X)? where
X is an average of observations Xj.

Theorem 1. Let T' and T? be two samples of two random variables T4 and
12. Let X; be the i-th element in the sorted pooled sample, R; its rank in that
sample, Y; the corresponding indicator variable, and ry, the sample point biserial
correlation between R; and Y;. Then, if there are no ties in uncensored data and
the censoring time is unique, the following relation holds

W = rpSrSy /|TH|T?] (1)
Additionally, if |T*|/|T?| approaches finite positive constant when |T*| — oo,
var(Wa) — var(rys)S3S% /T[T 2)
also holds when |T*| — oo.

Note that the assumptions of the theorem are fulfilled in the context of
SAT solving. As already noticed, the assumption of no ties is quite realistic for
uncensored data. The assumption of unique censoring time is standard in SAT
solving. The last assumption is trivially satisfied as one can always use samples
of equal size. This theorem allows us to use either of the proposed effect size
measures for function d since one can be easily calculated from the other. Since
p value depends on the value of the test statistic and its variance, the second
relation ensures that p value estimates are practically the same for large samples
regardless which of the proposed measures is used.

For our primary effect size measure, we take point biserial correlation due to
its technical advantages concerning the computation of statistical significance,
but w and 7 can also be reported for the effect size.

3.3 Determining Statistical Significance and the Effect Size

We say that two solvers perform the same on one instance if p,, = 0, or if 7y,
is not significantly different from 0 in sense of statistical testing. Also, for the
measure of difference d; between samples of random variables 7! and 72 we can
take r; — the estimate of p,;, for Fj. Statistical significance testing based on 7,
values is usually done after the Fisher transformation (see Sect. 2). To check the
statistical significance of the overall test, for each r;, value z(r;) is computed,
and those values are averaged. Since all the z(r;) are asymptotically normally
distributed, it is easy to see (using the properties of the normal distribution and
asymptotics) that the average Z is also asymptotically normally distributed:

Y 1 & N M var(r;)
z M;Z(Pz)ymgm



where p; is the population parameter estimated by r;. To see if the null hypothesis
& = 0 holds, one should check if the difference of obtained average Z from z(8) = 0
is statistically significant with respect to distribution of zZ. The p value (two
tailed) is 2(1 — &(Z/+/var(z))), where @ is the distribution function of standard
normal distribution. Note that we don’t directly use the distribution © of d
because the use of transformed values is more reliable.

The estimate of the effect size d is the average of values r;, and its magnitude
is interpreted in the way described in Sect. 2.

3.4 Ranking Several Solvers

If one is comparing several solvers, even if all pairwise comparison results are
known one still needs a ranking method.

Important issue with application of statistical tests in general is their poten-
tial nontransitivity. Namely, there are examples of random variables A, B, and C
such that P(A < B) > 3 and P(B < C) > 1 hold, but P(A < C) > 1 does not.
Note that this counterintuitive behavior is not a flaw of any test, but rather a
natural probabilistic phenomenon. A popular example are Efron’s dice [BH02].

There is still no proof that the proposed comparison procedure is transitive.
As with Efron’s dice it might be even meaningless to demand transitivity, but
this should be a subject of a further study. To overcome this difficulty, one can
use Kendal-Wei method for ranking based on pairwise comparisons [Ken55]. This
method is designed for situations characterized by nontransitivity property.

4 Experimental Results

In this section we present two experiments. The first one is concerned with the
number of shuffled variants appropriate for the application of the methodology,
and the second one shows results of the application of the methodology. In both
experiments we use the same 4 solvers and 2 benchmark sets as in Sect. 1. For
the level of statistical significance o we take the usual value of 0.05. We sample
from the runtime distributions by solving 50 shuffled variants of each formula
with cutoff time of 1200 seconds. Though the shuffling is quite acceptable for the
solvers used, one could also change the random seed. If all the shuffled variants of
the benchmark were solved in less than 0.1 seconds® by both solvers or no shuffled
variant was solved by any solver, the benchmark was discarded as uninformative.
For function d we choose ;. The variance of r,,;, is estimated by bootstrapping
[Efr79] with 100000 bootstraps.®

First important question concerning the application of the proposed method-
ology is its computational cost reflected by the number of shuffled variants one
has to use in order to obtain reliable estimates of the effect size and statistical

4 At most 1 industrial and 30 graph coloring instances were discarded in any compar-
ison on the basis of this criterion.

5 Source code of software used for all the statistical calculations is available from
http://www.matf.bg.ac.rs/~nikolic/solvercomparison/sc.zip



significance. Also, increasing the number of shuffled variants leads to smaller
p values due to larger sample size without the increase of the effect size. It is
advised that the sample size is not increased beyond the point at which the
effect size estimate stabilizes [Coh95]. To check the number of needed shuffled
variants, for each two solvers, we plotted the value of r,;, as the number of used
shuffled variants ranges from 1 to 50. The plot for each benchmark set is given
in Fig. 2. The plots indicate that the number of shuffled variants that should be
used is around 10 to 15. As expected, the results of the experiments based on
the estimates of w and 7 instead of p,; are the same.

1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 o

0| -5-16-15-20-25-36-35-40-45-50 8 5 10 15 20 25 30 35 40 45 50

-0.2) — -0
-04 -04

-0.6 -0.6
-0.8 -0.8
-1 -1

Fig. 2. Plots of rpp for industrial (left) and graph coloring (right) benchmark sets as a
function of the number of shuffled variants used.

In Table 2 we present estimates of ppp for comparisons of each pair of solvers
using 15 shuffled variants. The obtained results are not surprising with respect
to those shown in Table 1. In all the comparisons the p values (two tailed)
are less than 0.001 except when comparing original MiniSAT version and Min-
iSat2hack on graph coloring instances when it is 0.945. Nevertheless, note that
some statistically significant differences can be considered negligible with respect
to guidelines provided in Sect. 2. Note that no problems with transitivity ap-
peared. The ranking is easy to establish. It is ABDC on industrial and CDBA
on graph coloring instances, where the same labels are used as in Table 2.

5 Related Work

There are already several papers concerning the comparison of SAT solvers.
Le Berre and Simon recognize the importance of this question [LS04]. Also,
the possibility that shuffling can change the order of solvers was noticed. It is
suggested that the corpora could include shuffled variants of formulae. On the
other hand, this paper is concerned with the usual way of solver comparison.
Audemard and Simon further analyze the impact of the shuffling on the number
of solved formulae, and conclude that it can be large [AS08].



Industrial Graph coloring
A B C D A B C D
Al - |-0.097|-0.249(-0.229| - ]0.206|0.453|0.461
B|0.097| - |-0.241|-0.208|-0.206] - |0.327|0.333
C|0.249|0.241| - |0.072|-0.453|-0.327| - |-0.001
D]0.229/0.208 [-0.072| - |-0.461|-0.333]0.001| -
Table 2. Estimates of pps when comparing various solvers. Following labels are used
A = MiniSAT 09z, B = minisat cumr r, C = minisat2, D = MiniSat2hack.

Etzoni and Etzoni propose the use of statistical tests for censored data for
evaluation of speedup learning systems, but the comparison of runtime distri-
butions of instances is not discussed in their context [EE94]. Brglez et al. stress
the importance of statistical approach for SAT solver comparison [BLS05,BO07].
Also the importance of runtime distributions for SAT solver comparison is rec-
ognized. Statistical tests are used to compare performances of two solvers, but
only on one instance. Full methodology that could use a corpus of instances and
combine results of testing on individual instances is not devised. Moreover, we
exploit the notion of the effect size which is important for such methodology and
propose the extension to ranking several solvers using method which takes the
nontransitivity issue into account.

Pulina gives an excellent empirical analysis of ranking methods for systems
used in automated reasoning and more importantly establishes reasonable prop-
erties that those ranking methods should possess [Pul06].

6 Conclusions and Future Work

We demonstrated that comparison methods that are widely used can be un-
reliable, and depend on variable naming, ordering of clauses and literals, and
random seeds used (see Sect. 1). A new, statistically founded, methodology is
proposed for comparison of SAT solvers. It is based on the comparison of run-
time distributions instead of single solving times and uses standard effect size
measures to quantify the difference between those distributions.

We showed that the needed number of shuffled variants to estimate the effect
size between solvers is around 10 to 15. The testing corpora could be somewhat
reduced to compensate for this increase of solving time, thus trading some bench-
marks for thorough analysis. We regard this approach better, since the results
presented in Sect. 1 do not suggest that the use of large corpora eliminates the
significant chance effects on number of solved formulae. The new methodology
is able to practically eliminate the chance effects from the comparison (up to p
value) and provide information on statistical significance and effect size in the
way usual for statistical testing which standard approach does not.

As for the future work, important issue is finding the assumptions that guar-
antee the transitivity of proposed comparison procedure, and checking if non-



transitive effects can appear in SAT solving. Also, proposed ranking method is
yet to be analyzed in the light of the criteria established by Pulina [Pul06].
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Appendix

Proof of Theorem 1.

Let ny = |T|, ng = |T?|,and N = n;+nsy. The numbers of censored observations
in each sample are denoted by ¢; and ¢z, and C = ¢; + ¢o. Let I' and I? be the
sets of indices in the pooled sample of uncensored observations from samples 7!
and T2 respectively. Let I = I' U I2. The set of indices in the pooled sample of
all the observations of the first sample is denoted by Aj.

First we show that the relation (1) holds. We will consider expressions nineWea
and SrSyrpy and will conclude that they are equal. We use Mantel’s version of
We [Man67] noting that it can be decomposed in terms of ranks of uncensored
observations plus the term for censored observations.

mnoWe =Y Up=Y [(Ri—1)— (N =R)]+c1(N - C)
1€EA; eIt

=2 Ri—(n1—c)(N+1)+ (N -C)
eIt

=2 Ri—(n1—2c)(N+1) =1 (C+1)
eIt

Let us consider SrSyrpp:

N N N N N
SpSyrp =Y (Ri—R)(Yi-Y) =Y RYi-Y RY-Y RYi+) RY
i=1 i=1 i=1 i=1

i=1

where R and Y are the means of R; and Y;. Note that the last three sums are
equal, and hence

N N N
SrSyrm =) RYi—Y RY =) RY,~E
i=1 i=1 i=1



where £y = (N + 1)(n; — n2)/2 and is obtained using the fact that the sum of
ranks is constant and equals N(N +1)/2 and that Y = (n; —ng)/N. Separating
censored and uncensored observations yields

SpSyrpp = RiYi+Ey—E1 =Y Ri—Y Ri+E,—FE
el ielt iel?

where Es = (2N — C + 1)(c1 — ¢2)/2 since (2N — C + 1)/2 is the average rank
of the censored observations. Since all the uncensored observations are less than
censored ones, and since the sum of their ranks is constant, the second sum can
be expressed in terms of the first sum:

SrSyrpw =23 Ri—(N—=C)N-C+1)/2+E,— B
iell

After elementary calculations we obtain:

SrSyrpp =2  Ri— (n1 —2c1)(N +1) — e2(C +1)
ert

thus proving the relation (1).

To prove the relation (2), we note that Sy is constant, and that Sg is constant
for fixed ¢; and cy. For convenience, we will talk in terms of ratios a; = ¢1/n
and az = ¢1/ng. Using (1), the conditional variance of W¢ is var(Welar, az) =
%var(rm). We need to prove var(Wg)/var(Wgla, az) — 1 when ny — oo.
We will follow the reasoning of Gehan [Geh65]. By the law of total variance we
have

var(Wa) = Ey, i,var(Welly, le) +vary, 1, EOWally, l2)

By the law of large numbers, a; and as converge in probability to their expecta-
tions a1 and ag when ny — oo. Since the probabilities of I; such that |l; —cy;| > €
vanish for all € > 0 when n; — oo, it holds

nl_?’Elllevar(Wgﬂl, l2)

ny *var(Wglay, az)

when n; — 1. The last relation is obtained using the convergence theorems by
Cramér and Slutsky [Cra46] which can be used since it is known that ny *var(Welay, as) =
O(1) when n; — oo [Geh65].

Regarding the second term in the expansion of unconditional variance, by
definition

vary, 1, EWg|l,ls) = Ei, 1, E2(Wal|l, le) — (B1, 1, EWg|ly, 12))?

which converges to 0 by similar reasoning as for the first term. This proves the
convergence (2). O



