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Abstract

We present a formalization and a formal total correctness proof of a MiniSAT-
like SAT solver within the system Isabelle/HOL. The solver is based on the
DPLL procedure and employs most state-of-the art SAT solving techniques, in-
cluding the conflict-guided backjumping, clause learning, and the two-watched
unit propagation scheme. A shallow embedding into Isabelle/HOL is used and
the solver is expressed as a set of recursive HOL functions. Based on this specifi-
cation, the Isabelle’s built-in code generator can be used to generate executable
code in several supported functional languages (Haskell, SML, and OCaml).
The SAT solver implemented in this way is, to our knowledge, the first fully
formally and mechanically verified modern SAT solver.

Keywords: formal program verification, SAT problem, DPLL procedure,
Isabelle

1. Introduction

The propositional satisfiability problem (SAT) is the problem of deciding if
there is a truth assignment under which a given propositional formula (in con-
junctive normal form) evaluates to true. It is a canonical NP-complete problem
[Coo71] and it holds a central position in the field of computational complex-
ity. The SAT problem is also important in many practical applications such as
electronic design automation, software and hardware verification, artificial in-
telligence, and operations research. Thanks to recent advances in propositional
solving technology, SAT solvers are becoming the tool for attacking more and
more practical problems. Most modern SAT solvers are based on the Davis-
Putnam-Logemann-Loveland (DPLL) procedure [DP60, DLL62] and its modifi-
cations.

Since SAT solver are used in applications that are very sensitive (e.g., soft-
ware and hardware verification), their misbehavior could be both financially
expensive and dangerous from the aspect of security. Clearly, having a trusted
SAT solving system is vital. This can be achieved in two different ways.

1. One approach is to extend an online SAT solver with the possibility of
generating models of satisfiable formulas and proofs of unsatisfiability for
unsatisfiable formulas. The generated models and proofs are then checked
offline by an independent trusted checker [ZM03, Gel07].

2. Another approach is to apply software verification techniques and verify
the implementation of the SAT solver itself, so that it becomes trusted
[LS08, SV08, Mar09a].
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The first approach has successfully been used in recent years. It is relatively
easy to implement, but it has some drawbacks. Generating object-level proofs
introduces about 10% overhead to the solver’s running time and proof checking
can also take significant amount of time [Gel07]. More importantly, since proofs
are very large objects, they can consume up to several gigabytes of storage space.
Since proof checkers have to be trusted, they must be very simple programs so
that they could be ,,verified” only by manually inspecting their source code
[Gel07]. On the other hand, in order to handle large proof objects, checkers
must use specialized functionality of the underlying operating system, which
reduces the level of their confidence.1

In this work we take the second, harder, approach and formally verify a full
implementation of a SAT solver. There are several reasons for doing this.

1. We believe that this verification effort could help in better theoretical
understanding of how and why modern SAT solver procedures work.

2. Verified SAT solvers can serve as the trusted kernel checkers for verifying
results of other untrusted verifiers such as BDDs, model checkers, and
SMT solvers [SV08]. Also, verification of some SAT solver modules (e.g.,
Boolean constraint propagation) can serve as a basis for creating a verified,
yet efficient, proof checker for SAT.

3. The overheads of generating and storing unsatisfiability proofs can be
avoided if the SAT solver itself is trusted.

4. We hope that this work contributes to the Verification Grand Challenge
[VSTTE], and adds to the growing collection of non-trivial software that
has been fully formally verified.

In order to prove the correctness of a SAT solver implementation, it needs
to be formalized in some meta-theory so its properties can be analyzed by us-
ing an appropriate mathematical apparatus. In order to achieve the desired,
highest level of trust, formalization in a classical “pen-and-paper” fashion is not
satisfactory and a mechanized and machine-checkable formalization is required.

Results presented in this paper constitute a significant part of our SAT veri-
fication project [MJ09c], illustrated in Figure 1. All formalizations done within
the project were made within the system Isabelle/HOL [NPW02].2 As a part of
this project, abstract state transition systems for SAT [KG07, NOT06] have been
formalized. Following these formalizations, we have implemented a modern SAT
solver ArgoSAT 3 in C++. Since formal verification of the real C++ code was
beyond of our reach, we have developed a corresponding SAT solver description
in an imperative pseudo-language, within a tutorial on the modern SAT solv-
ing technology [Mar09a]. This description (obtained from an executable SAT
solver) was semi-mechanically verified using Hoare logic (verification conditions
were manually generated and then verified within Isabelle/HOL) [Mar09a].

In the current paper, a different approach is pursued. A shallow embedding
into HOL is used, i.e., the SAT solver is expressed as a set of recursive functions
in HOL (which is, for this purpose, treated as a pure functional programming

1For example, proof checker used in SAT competitions uses Linux’s mmap functionality
[Gel07].

2The original proof documents are available online [Mar08].
3The web page of ArgoSAT is http://argo.matf.bg.ac.rs
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Figure 1: SAT Verification Project

language). From this specification, an executable SAT solver in several func-
tional languages (e.g., Haskell, SML, OCaml) can be automatically extracted.
The extracted solver achieves much higher level of trust, since the whole for-
malization is done within the theorem prover. In addition to this important
conceptual difference, this paper also brings a formal proof of termination of a
modern solver, not previously given.

In the rest of the paper, a full, self-contained, implementation of a SAT
solver within Isabelle/HOL will be presented. However, some familiarity with
modern SAT solving technology is assumed (the reader can consult tutorials
given in the literature [BHMW09, Mar09a, GKSS07, ES04]).

Overview of the paper. The rest of the paper is structured as follows. In
§2 we give some background information about the DPLL procedure and its
modifications. We also give some background on program verification. In §3
we introduce basic notions of the system Isabelle and formulate an underlying
theory for our formalization. The central section of the paper is §4 in which we
present the specification of the SAT solver and introduce correctness conditions
along the way. In §5 we outline the correctness proof of our implementation and
in §6 we discuss some aspects of the proof management. In §7 we list some of
the related work, in §8 we list some possible directions for further work, and in
§9 we draw final conclusions.

2. Background

DPLL Procedure and its Modifications. Most modern SAT solvers are
based on the Davis-Putnam-Logemann-Loveland (DPLL) procedure. Its original
recursive version is shown in Figure 2, where F denotes a set of propositional
clauses tested for satisfiability and F [l → ⊤] denotes the formula obtained
from F by substituting the literal l with ⊤, its opposite literal l with ⊥, and
simplifying afterwards. A literal is pure if it occurs in the formula but its
opposite literal does not occur. A clause is unit if it contains only one literal.
This recursive implementation is practically unusable for larger formulae and
therefore it is not used in modern SAT solvers, nor in this paper.

Starting with the work on the GRASP and SATO systems [MSS99, Zha97]
and continuing with Chaff, BerkMin and MiniSAT [MMZ+01, GN02, ES04],
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function dpll (F : Formula) : (SAT, UNSAT)

begin

if F is empty then

return SAT

else if there is an empty clause in F then

return UNSAT

else if there is a pure literal l in F then

return dpll(F [l→ ⊤])
else there is a unit clause [l] in F then

return dpll(F [l→ ⊤])
else begin

select a literal l occurring in F

if dpll(F [l→ ⊤]) = SAT then

return SAT

else

return dpll(F [l→ ⊥])
end

end

Figure 2: DPLL algorithm — recursive definition

the spectacular improvements in the performance of DPLL-based SAT solvers
achieved in the last years are due to (i) several conceptual enhancements of
the original DPLL procedure, such as backjumping (a form of non-chronological
backtracking), conflict-driven lemma learning, and restarts, (ii) advanced heuris-
tic components (e.g., literal selection strategies) and (iii) better implementation
techniques, such as the two-watched literals scheme for unit propagation. These
advances make it possible to decide satisfiability of some industrial SAT prob-
lems with tens of thousands of variables and millions of clauses.

Abstract state transition systems for SAT. During the last few years two
state transition systems which model modern DPLL-based SAT solvers and
related SMT solvers have been published [NOT06, KG07]. These descriptions
define the top-level architecture of solvers as a mathematical object that can be
grasped as a whole and fruitfully reasoned about. Both systems are accompanied
by pen-and-paper correctness and termination proofs. Although they succinctly
and accurately capture all major aspects of the solvers’ global operation, they
are still high level and far from the actual implementations. Both systems
model the solver behavior as transitions between states that represent the values
of global variables of the solver. These include the set of clauses F and the
corresponding assertion trail M . Transitions between states are performed only
by using precisely defined transition rules. The solving process is finished when
no transition rule applies and final state is reached.

The system of Nieuwenhuis et al. [NOT06] is very coarse. It can capture
many different strategies seen in the state-of-the art SAT solvers, but this comes
at a price. Several important aspects still have to be specified in order to build
the implementation based on the given set of rules.

The system of Krstic and Goel [KG07] gives a more detailed description of
some parts of the solving process (particularly the conflict analysis phase) than
the previous one. Since this system is used as a basis of the implementation given
in this paper, we list its transition rules in Figure 3. Together with the formula
F and the trailM , the state of the solver is characterized by the conflict analysis
set C which is either the set of literals or the distinguished symbol no cflct. The
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Decide:
l ∈ F l, l /∈ M

M := M ld

UnitPropag:
l ∨ l1 ∨ . . . ∨ lk ∈ F l1, . . . , lk ∈ M l, l /∈ M

M := M l
Conflict:
C = no cflct l1 ∨ . . . ∨ lk ∈ F l1, . . . , lk ∈ M

C := {l1, . . . , lk}
Explain:
l ∈ C l ∨ l1 ∨ . . . ∨ lk ∈ F l1, . . . , lk ≺ l

C := C ∪ {l1, . . . , lk} \ {l}
Learn:
C = {l1, . . . , lk} l1 ∨ . . . ∨ lk /∈ F

F := F ∪ {l1 ∨ . . . ∨ lk}
Backjump:
C = {l, l1, . . . , lk} l ∨ l1 ∨ . . . ∨ lk ∈ F level l > m ≥ level li

C := no cflct M := M [m] l
Forget:
C = no cflct c ∈ F F \ c � c

F := F \ c
Restart:
C = no cflct

M := M [0]

Figure 3: Rules of dpll as given by Krstić and Goel [KG07]

input to the system is an arbitrary set of clauses F0, modeled as initial state in
which F = F0, M = [ ], and C=no cflct. The rules have guarded assignment
form: above the line is the condition that enables the application of the rule,
below the line is the update to the state variables.

Formal program verification. Formal program verification is the process
of proving that a computer program meets its specification which formally de-
scribes the expected program behavior. Early results date back to 1950’s and
pioneers in this field were A. Turing, J. von Neumann and J. McCarthy. In the
late 1960’s R. Floyd introduced equational reasoning on flowcharts for proving
program correctness and T. Hoare introduced axiomatic semantics for program-
ming constructs. Following the lessons from major software failures in recent
years, an increasing amount of effort is being invested in this field.

To achieve the highest level of trust, mechanically checkable formal proofs
of correctness are required. Many fundamental algorithms and properties of
data structures have been formalized and verified in this way. Also, lot of
work has been devoted to formalization of programming language semantics,
compilers, communication protocols, security protocols, etc. Many of early
results in mechanical program verification were carried out by Boyer and Moore
using their theorem prover. Theorem provers that are most commonly used
for program verification nowadays are Isabelle, HOL, Coq, PVS, Nuprl, etc. A
large collection of formalized theories (of both pure mathematics and computer
science) mechanically checked by the theorem prover Isabelle is available in
Archive of formal proofs (http://afp.sourceforge.net).

Formal program verification by shallow embedding into HOL. Shallow
embedding into higher-order logic is a technique that is widely used for verifica-
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tion, despite its well-known limitations [BKH+08]. This success is due in part
to the simplicity of the approach: a formal model of the operational or denota-
tional semantics of the language is not required and many technical difficulties
(e.g., the representation of binders) are avoided altogether. Furthermore, the
proof methods used are mainly standard induction principles and equational
reasoning, and no specialized program logic (e.g., Hoare logic) is necessary. The
specifications may be turned into executable code directly by means of code
generation [Haf08]. The main drawback of this approach is that all programs
must be expressed as purely functional. As the notion of side-effect is alien to
the world of HOL functions, programs with imperative updates of references
or arrays cannot be expressed directly which heavily effects the efficiency of
the generated code. Still, approaches to overcome these difficulties have been
proposed recently [BKH+08].

3. Underlying Theory

In order to create and reason about the correctness of a SAT solver, we have
to formally define some basic notions of propositional logic. The full formal-
ization has been made in higher-order logic of the system Isabelle and basic
knowledge about this system is assumed in the rest of the paper. We will use
a syntax similar to the syntax used in Isabelle/HOL. Formulas and logical con-
nectives of this logic (∧, ∨, ¬, −→, ←→) are written in the usual way. Function
applications are written in prefix form, as in (f x1 . . . xn). Existential quantifi-
cation is denoted by ∃ x. ... and universal quantification by ∀ x. ....

We assume that the underlying theory we are defining includes the theory
of ordered pairs, lists, (finite) sets, and optional data-types (all of them are
built-in in Isabelle/HOL). We also assume that record data-types are available.
Syntax of these operations is summarized in the first column of Figure 4 and
the semantics is informally described in the second column.

Basic types. Apart from the basic built-in types, we introduce the types used
in propositional logic of CNF formulas as given by Definition 1.

Definition 1.

Variable natural number.
Literal either a positive variable (Pos vbl) or a negative variable (Neg vbl)
Clause a list of literals
Formula a list of clauses
Valuation a list of literals

Or in Isabelle’s syntax:

types Variable = nat

datatype Literal = Pos Variable | Neg Variable

types Clause = "Literal list"

types Formula = "Clause list"

types Valuation = "Literal list"

Alternatively, (multi)sets could have been used instead of lists (e.g., valu-
ations could have been defined as sets of literals), but we opted for lists since
they more closely resemble real SAT solver implementations.
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bool the Boolean type with values True and False

ExtendedBool the extended Boolean type with values True, False and Undef

nat the type of natural numbers

(′a×′ b) the type of ordered pairs with elements of types ′a and ′b

(a, b) the ordered pair of elements a and b
′a list the type of lists with elements of type ′a

[ ] the empty list

[e1, . . . , en] the list of n given elements e1, . . . , en
e# list the list obtained by prepending the element e to the list list

list1@list2 the list obtained by appending the lists list1 and list2

e ∈ list e is a member of the list list

(removeAll e list) the list obtained by removing all occurrences of the element e
from the list list

(list diff list1 list2) the list obtained from the list list1 by removing all elements
of the list list2 from it

(fst list), (hd list) the first element of the list list

(tl list) the list obtained by removing the first element of the list list

list !n the n-th element of the list list

(last list) the last element in the nonempty list list

(length list) the length of the list list

(distinct list) check if the list list contains no repeating elements

(remdups list) the list obtained from the list list by removing
all its duplicate elements

(filter P list) the list obtained from the list list by taking
all its elements that satisfy the condition P

(map f list) the list obtained from the list list by applying
the function f to all its elements

(prefixToElement e list) the prefix of the list list up to the first occurrence
of the element e (including it)

a ≺list b the element a precedes the element b in the list list
′a set the type of sets with elements of type ′a

{} the empty set

e ∈ set e is a member of the set set

set1 ∪ set2 the set union of set1 and set2

|set | the number of elements in the set set
′a option the type of optional values of the type ′a

Some a the optional value exists and is a

None the optional value does not exist

f(x := y) the mapping obtained from the mapping f by setting
the value of x to y

recLf1 := a1, . . . , fk := akM the record obtained from the record rec by setting
the values of fields f1, . . . , fk to values a1, . . . , ak,
respectively

Figure 4: Summary of Isabelle’s basic types and operations
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For the sake of readability, we will sometime omit printing types and use
the following naming convention: literals (i.e., variables of the type Literal) are
denoted by l (e.g., l, l′, l0, l1, l2, . . .), variables by vbl , clauses by c, formulae by
F , and valuations by v.

Most of the following definitions are formalized by using primitive recursion,
so that they can be used to generate executable code. However, in order to
simplify the presentation and improve readability we give their characterizations
in an informal way and omit the Isabelle code.

Definition 2. The opposite literal of a literal l, denoted l, is defined by: Pos vbl =
Neg vbl, Neg vbl = Pos vbl.

We abuse the notation and overload some symbols. For example, the symbol
∈ denotes both set membership and list membership. It is also used to denote
that a literal occurs in a formula.

Definition 3. A formula F contains a literal l (i.e., a literal l occurs in a
formula F ), denoted l ∈ F , iff ∃c. c ∈ F ∧ l ∈ c.

Symbol vars is also overloaded and denotes the set of variables occurring in
a clause, in a formula, or in a valuation.

Definition 4. The set of variables that occur in a clause c is denoted by (vars c).
The set of variables that occur in a formula F is denoted (vars F ). The set of
variables that occur in a valuation v is denoted (vars v).

The semantics is introduced by the following definitions.

Definition 5. A literal l is true in a valuation v, denoted v � l, iff l ∈ v. A
clause c is true in a valuation v, denoted v � c, iff ∃l. l ∈ c ∧ v � l. A formula
F is true in a valuation v, denoted v � F , iff ∀c. c ∈ F ⇒ v � c.

We will write v 2 l to denote that l is not true in v (note that it does not
mean that l is false in v), v 2 c to denote that c is not true in v, and v 2 F to
denote that F is not true in v. We will say that l (or c, or F ) is unsatisfied in v.

Definition 6. A literal l is false in a valuation v, denoted v �¬ l, iff l ∈ v. A
clause c is false in a valuation v, denoted v �¬ c, iff ∀l. l ∈ c ⇒ v �¬ l. A
formula F is false in a valuation v, denoted v �¬F , iff ∃c. c ∈ F ∧ v �¬ c.

We will write v 2¬ l to denote that l is not false in v, v 2¬ c to denote that
c is not false in v, and v 2¬F to denote that F is not false in v. We will say
that l (or c, or F ) is unfalsified in v.

Definition 7. A valuation v is inconsistent, denoted (inconsistent v), iff it con-
tains both literal and its opposite i.e., iff ∃l. v � l ∧ v � l. A valuation is
consistent, denoted (consistent v), iff it is not inconsistent.

Definition 8. A model of a formula F is a consistent valuation under which
F is true. A formula F is satisfiable, denoted (sat F ), iff it has a model i.e.,
∃v. (consistent v) ∧ v � F .
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Definition 9. A formula F entails a clause c, denoted F � c, iff c is true in
every model of F . A formula F entails a literal l, denoted F � l, iff l is true in
every model of F . A formula F entails valuation v, denoted F � v, iff it entails
all its literals i.e., ∀l. l ∈ v ⇒ F � l. A formula F1 entails a formula F2 denoted
F1 � F2, if every model of F1 is a model of F2.

Definition 10. Formulae F1 and F2 are logically equivalent, denoted F1 ≡ F2,
iff any model of F1 is a model of F2 and vice versa, i.e., iff F1 � F2 and F2 � F1.

Definition 11. A clause c is unit in a valuation v with a unit literal l, denoted
(isUnit c l v) iff l ∈ c, v 2 l, v 2¬ l and v �¬ (c \ l) (i.e., ∀l′. l′ ∈ c ∧ l′ 6= l ⇒
v �¬ l′).

Definition 12. A clause c is a reason for propagation of literal l in valuation
v, denoted (isReason c l v) iff l ∈ c, v � l, v �¬ (c \ l), and for each literal
l′ ∈ (c \ l), the literal l′ precedes l in v.

Definition 13. The resolvent of clauses c1 and c2 over the literal l, denoted
(resolvent c1 c2 l) is the clause (c1 \ l)@(c2 \ l).

Definition 14. A clause c is a tautological clause, denoted (clauseTautology c),
if it contains both a literal and its opposite (i.e., ∃ l. l ∈ c ∧ l ∈ c).

Definition 15. The conversion of a valuation v to a formula 〈v〉 is the list that
contains all single literal clauses made of literals from v.

Assertion Trail. In order to build a non-recursive implementation of the
dpll algorithm, the notion of valuation should be slightly extended. During the
solving process, the solver should keep track of the current partial valuation. In
that valuation, some literals are called decision literals. Non-decision literals are
called implied literals. These check-pointed sequences that represent valuations
with marked decision literals will be stored in the data structure called the
assertion trail. All literals that belong to the trail will be called asserted literals.
The assertion trail operates as a stack and literals are always added and removed
from its top. We extend the underlying theory with the type LiteralTrail, as given
by Definition 16:

Definition 16.

LiteralTrail a list of literals, with some of them marked as decision literals.

We will denote variables of the type LiteralTrail by M (e.g., M,M ′,M0, . . .).

Example 1. A trail M could be [+1, |−2,+6, |+5,−3,+4, |−7]. The symbol +
is written instead of the constructor Pos, the symbol − instead of Neg and the
decision literals are marked with the symbol | on their left hand sides.

A trail can be implemented, for example, as a list of (Literal, bool) or-
dered pairs and all following definitions will be based on this specific implemen-
tation. Our SAT solver implementation effectively uses the LiteralTrail datatype
and so we also show its Isabelle formalization.

types LiteralTrail = "(Literal × bool) list"
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Definition 17. For a trail element a, (element a) denotes the first (Literal)
component and (isDecision a) denotes the second (Boolean) component. For a

trail M , (elements M) (abbreviated as M̂) denotes the list of all its elements and
(decisions M) denotes the list of all its marked elements (i.e., of all its decision
literals).

definition element :: "(Literal × bool) ⇒ Literal"

where "element x = fst x"

definition isDecision :: "(Literal × bool) ⇒ bool"

where "isDecision x = snd x"

definition elements :: "LiteralTrail ⇒ Literal list"

where "elements M = map element M"

definition decisions :: "LiteralTrail ⇒ Literal list"

where "decisions trail = filter (λ e. isDecision e) trail"

Definition 18. (decisionsTo M l) is the list of all marked elements from a trail
M that precede the first occurrence of the element l, including l if it is marked.

definition decisionsTo :: "Literal ⇒ LiteralTrail ⇒ Literal list"

where

"decisionsTo e trail = decisions (prefixToElement e trail)"

Example 2. For the trail given in Example 1, (decisions M) = [−2,+5,−7],
(decisionsTo M + 4) = [−2,+5], and (decisionsTo M − 7) = [−2,+5,−7].

Definition 19. The current level for a trail M , denoted (currentLevel M), is the
number of marked literals in M , i.e., (currentLevel M) = (length (decisions M)).

definition currentLevel :: "LiteralTrail ⇒ nat"

where

"currentLevel trail = length (decisions trail)"

Definition 20. The decision level of a literal l in a trail M , denoted (level l M),
is the number of marked literals in the trail that precede the first occurrence of
l, including l if it is marked, i.e., (level l M) = (length (decisionsTo M l)).

definition elementLevel :: "Literal ⇒ LiteralTrail ⇒ nat"

where

"elementLevel e trail = length (decisionsTo e trail)"

Definition 21. (prefixToLevel M level) is the prefix of a trail M containing all
elements of M with levels less or equal to level .

definition prefixToLevel :: "nat ⇒ LiteralTrail ⇒ LiteralTrail"

Example 3. For the trail in Example 1, (level +1 M) = 0, (level +4 M) = 2,
(level − 7 M) = 3, (currentLevel M) = 3, (prefixToLevel M 1) = [+1, |+2,+6].

Definition 22. The last asserted literal of a clause c, denoted (lastAssertedLiteral c M̂),

is the literal from c that is in M̂ , such that no other literal from c comes after
it in M̂ .
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The function isLastAssertedLiteral is used to check if the given literal is the
last asserted literal of the given clause in the given valuation.

definition isLastAssertedLiteral::"Literal ⇒ Literal list ⇒ Valuation ⇒ bool"

where

"isLastAssertedLiteral literal clause valuation =

literal ∈ clause ∧ valuation � literal ∧
(∀ literal’. literal’ ∈ clause ∧ literal’ 6= literal −→

literal ⊀valuation literal’)”

The function getLastAssertedLiteral is used to detect the last asserted literal
of the given clause in the given valuation.

definition getLastAssertedLiteral :: "Clause ⇒ Valuation ⇒ Literal"

where

"getLastAssertedLiteral clause valuation =

last (filter (λ l. l ∈ clause) valuation)"

Example 4. Let c is [+4,+6,−3] and M is the trail from Example 1. Then,

(lastAssertedLiteral c M̂) = +4.

4. SAT Solver Formalization

In this section we will present a formalized implementation of a SAT solver
within the underlying theory introduced in Section 3. Different concepts and
algorithms will be described in separate subsections. Together with the solver
implementation we will give conditions that describe its variables and their rela-
tionships that must be invariant for the solver functions. These invariants fully
characterize the role of some variables in the system and help understanding the
whole system. Because invariants are listed simultaneously with the implemen-
tation, the style used can be seen as implementation driven by its specification.

Note that the following solver description is very formal and concise, and
that some previous knowledge about the SAT solving technology is assumed.
Useful tutorial descriptions can be found in the literature (e.g., [BHMW09,
Mar09a, GKSS07, ES04]).

4.1. Solver State

In an imperative or object-oriented language, the state of the solver is rep-
resented by using global or class variables. Functions of the solver access and
change these variables as their side-effects. In HOL, functions cannot have
side-effects, so the solver state must be wrapped up in a record and passed
around with each function call. Therefore, all functions in our functional im-
plementation will receive the current solver state as their last parameter and
return the modified state along with their result. However, function definitions
will use monadic Haskell-style do syntax recently supported by Isabelle/HOL
[BKH+08] and hide explicit state changes. For each component XXX of the state
basic operations readXXX and updateXXX will be provided.

The state of the solver is represented by the following record:

record State =
"getSATFlag" :: ExtendedBool
"getF" :: Formula
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"getM" :: LiteralTrail
"getConflictFlag" :: bool
"getConflictClause" :: pClause
"getQ" :: "Literal list"

"getReason" :: "Literal ⇒ pClause option"

"getWatch1" :: "pClause ⇒ Literal option"

"getWatch2" :: "pClause ⇒ Literal option"

"getWatchList" :: "Literal ⇒ pClause list"

"getC" :: Clause
"getCl" :: Literal
"getCll" :: Literal

The data-type pClause is just a synonym for nat and it indicates “pointers”
to clauses i.e., indices of clauses in the clause list representing the formula.

Basic variables of the solver state are the following.

- The variable SATFlag reflects the status of the solving process and it re-
mains Undef until the formula which is being solved is detected to be
satisfiable (when SATFlag is set to True) or to be unsatisfiable (when
SATFlag is set to False). Its characterization will be the main partial
correctness result and it will be proved in Section 5.

Inv[SATFlag]4:

SATFlag = True ↔ (sat F0) ∧ SATFlag = False ↔ ¬(sat F0),

where F0 is the formula tested for satisfiability.

- The literal trail M contains the current partial valuation (i.e., M̂ is the
current partial valuation). It is characterized by the following invariants:

Inv[Mconsistent] :

(consistent M̂)

Inv[Mdistinct] :

(distinct M̂),

which ensure that M also represents a mapping of some variables to their
truth values.

The trail M contains literals whose variables are in the initial formula F0

and literals whose variables are in the special set of decision variables (de-
noted by decisionVars and used in decide operation formalized in Section
4.6). Note that these two sets usually coincide, but this is not necessarily
the case. This domain property of M is given by the following invariant.

Inv[Mvars] :
(vars M) ⊆ (vars F0) ∪ decisionVars

- The formula F will be referred to as the current set of clauses. It changes
during the solving process and its clauses are either (simplified) clauses
of the initial formula F0 or its consequences that are learned during the

4We will say that a state satisfies an invariant and that invariant holds in a state if the
components (getXXX) of the state satisfy the condition given by the invariant.
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solving process. Since initial clauses are built from literals of F0 and
learned clauses are built from literals of M , the formula F satisfies the
following domain property.

Inv[Fvars] :
(vars F ) ⊆ (vars F0) ∪ decisionVars

All clauses in F will have at least two different literals. Single literal clauses
[l] will never be added to F , but instead their only literal l will be immediately
added to M . Indeed, adding a single literal clause [l] to F would be useless
because its only literal l must be contained in every satisfying valuation and [l]
is automatically satisfied when l is asserted. To ensure correctness, once these
literals are added to M , they must never get removed from it. This is the case
in the implementation we provide, since all these literals will be asserted at the
decision level zero of the trail M which never gets backtracked.

As said, all clauses in F are logical consequences of F0. Also, the decision
level zero of the trail M contains literals that are logical consequences of the
formula F0. The following invariant describing the relation between the initial
formula F0, the formula F , and the trail M plays a very important role in the
soundness and completeness of the solving process. It states that the formula
F0 is fully characterized by the formula F and the decision level zero of the trail
M .

Inv[equivalent] :

F0 ≡ F @ 〈 ̂prefixToLevel 0 M〉

The fact that F contains only clauses with two or more different literals also
simplifies the implementation of the two-watched literal scheme (see Section
4.4.1).

Other components of the solver state are used in specific phases of the solving
process and will be explained in the following sections.

4.2. Initialization

In this section we describe the process of initializing the solver state by the
given formula F0 tested for satisfiability.

The function initialize calls addClause for each clause in F0 which appropri-
ately updates the solver state.

primrec initialize :: "Formula ⇒ State ⇒ State"

where

"initialize [] = return ()"

| "initialize (clause # formula) =

do

addClause clause;

initialize formula

done

The function initialize is initially called only for initialState, so there are no
decision literals in M when it is called.

definition initialState :: "State"

where

"initialState =

L getSATFlag = Undef,
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getF = [],

getM = [],

getConflictFlag = False,

getConflictClause = 0,

getQ = [],

getWatch1 = λ c. None,

getWatch2 = λ c. None,

getWatchList = λ l. [],

getReason = λ l. None,

getC = arbitrary,

getCl = arbitrary,

getCll = arbitrary

M
"

Before we introduce the function addClause, we define an auxiliary function
removeFalseLiterals used to simplify clauses. It removes all literals from the given
clause that are false in the given valuation.

definition removeFalseLiterals :: "Clause ⇒ Valuation ⇒ Clause"

where

"removeFalseLiterals clause valuation =

filter (λ l. valuation 2¬ l) clause"

The function addClause (called only by initialize) preprocesses the clause by
removing its repeated literals and removing its literals that are false in the
current trail M . After this, several cases arise.

- If the clause is satisfied in the current trail M , it is just skipped. The
rationale for this is that if there is a satisfying valuation for F0, it will be
an extension of the current trail M , so it will also satisfy the clause that
was skipped.

- If the clause is empty after preprocessing, the formula F0 is unsatisfiable
and SATFlag is set to False, since the empty clause cannot be satisfied in
any valuation.

- Tautological clauses (i.e., clauses containing both a literal and its opposite)
are also skipped since they can always be satisfied.

The two remaining cases actually update F or M .

1. As described, clauses [l] containing only a single literal l are treated in
a special way. Since they can only be satisfied if their literal l is true in
M , l it is immediately added to M . Then a round of unit propagation
(see Section 4.5) is performed, which can infer further consequences of
asserting l.

2. Clauses containing more than one literal are added to F and data struc-
tures related to the two-watched literal scheme are appropriately initial-
ized (see Section 4.4.1).

definition addClause :: "Clause ⇒ State ⇒ State"

where

"addClause clause =

do

M ← readM;

let clause’ = (remdups (removeFalseLiterals clause (elements M)));
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(if (¬ clauseTrue clause’ (elements M)) then

(if clause’=[] then

updateSATFlag False

else (if (length clause’ = 1) then

do

assertLiteral (hd clause’) False;

exhaustiveUnitPropagate

done

else (if (¬ clauseTautology clause’) then

do

F ← readF;

let clauseIndex = length F;

updateF (F @ [clause’]);

setWatch1 clauseIndex (clause’ ! 0);

setWatch2 clauseIndex (clause’ ! 1)

done

)))

)

done

"

4.3. Top Level Solver Operation

The only function of the solver that end-users are expected to call is the
function solve. First it performs initialization and then it performs the main
solver loop while the status of the solving process (given by the variable SAT-
Flag) is Undef. The first time SATFlag changes, the main solver loop stops and
the current value of SATFlag is the final solver result.

definition solve :: "Formula ⇒ State ⇒ State × ExtendedBool"

where

"solveFormula F0 =

do

initialize F0;

solveLoop (vars F0);

readSATFlag

done

"

function (domintros, tailrec)

solveLoop :: "Variable set ⇒ State ⇒ State"

where

"solve loop decisionVars =

do

SATFlag ← readSATFlag;

(if (SATFlag = Undef) then

do

solveLoopBody decisionVars;

solveLoop decisionVars

done

)

done

"

by pat completeness auto

Note that the solve loop is defined by general recursion, so its termination is
not trivial and it will be discussed later.

The body of the solver loop begins with a round of exhaustive unit propa-
gation. After that, four different cases arise.
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1. It has been detected that M �¬F . In that case we say that a conflict
occurred.
(a) If there are no decision literals in M , we say that a conflict at deci-

sion level zero occurred and it is determined that the formula F0 is
unsatisfiable. In that case, SATFlag is set to False.

(b) If there are some decision literals in M , then the conflict analysis and
resolving procedure is performed (see Section 4.7).

2. It has been detected that M 2¬F .
(a) If all variables from the fixed variable set decisionVars are defined in

the current trail M , it is determined that the formula is satisfiable.
In that case, SATFlag is set to True. The set decisionVars must
meet additional requirements in order to guarantee soundness of this
conclusion. For example, it suffices that (vars F0) ⊆ decisionVars , as
it is the case in our implementation.

(b) If there are some decision variables that are undefined in M , a new
decision is made (see Section 4.6) and a decision literal is asserted.

The detection of clauses of F that are false in M̂ or unit in M̂ must be done
efficiently so that it does not become the bottleneck of the whole solver. An
optimized way to achieve this is given in Section 4.4.

definition solveLoopBody :: "Variable set ⇒ State ⇒ State"

where

"solveLoopBody decisionVars =

do

exhaustiveUnitPropagate;

conflictFlag ← readConflictFlag;

M ← readM;

(if conflictFlag then

(if (currentLevel M) = 0 then

updateSATFlag FALSE

else

do

applyConflict;

explainUIP;

applyLearn;

applyBackjump

done

)

else

(if (vars (elements M) ⊇ decisionVars) then

updateSATFlag TRUE

else

applyDecide decisionVars

)

)

done

"

4.4. Conflict and Unit Clause Detection

Each time a literal is added to M , the formula F is checked for existence
of unit or false clauses. Results of this check are stored in the following state
variables.

- The variable conflictFlag is set when it is determined that the current
set of clauses F is false in the valuation M̂ . The invariant that fully
characterizes it is:
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Inv[conflictFlagDef] :

conflictFlag ←→ M̂ �¬F

- The number conflictClause is the index of a clause in F that is false in
the valuation M̂ . Its defining invariant is:

Inv[conflictClauseDef] :

conflictFlag −→ conflictClause < |F | ∧ M̂ �¬ (F ! conflictClause)

- The list Q is a list of all literals that are unit literals for clauses in F which
are unit clauses with respect to the valuation M̂ . These literals are ready
to be asserted in M as a result of the unit propagation operation. The
unit propagation queue Q is fully characterized by the following invariant.

Inv[QDef] :

¬conflictFlag −→ (∀l. l ∈ Q ←→ (∃c. c ∈ F ∧ (isUnitClause c l M̂)))

Note that this condition guarantees the completeness for unit propagation
i.e., it guarantees that all unit literals for unit clauses in F are contained
in Q. This is not necessary for the soundness nor completeness of the
whole procedure, but, if satisfied, leads to better efficiency.

Also, there should be no repeated elements in Q.

Inv[Qdistinct] :
(distinct Q)

As Q is built of literals of F its domain (its set of variables) is included in
the domain of F .

Inv[Qvars]
(vars Q) ⊆ (vars F0) ∪ decisionVars

- The mapping reason maps literals in Q to indices of clauses in F for
which they are the unit literals. Since this mapping does not change
when the literals from Q get asserted in M , it continues to map non-
decision literals of M to indices of clauses in F that are reasons for their
propagation. Notice that no reason clauses can be attached to the literals
at the decision level zero. This is because literals at the decision level
zero have a special role in the solving process, as they can get asserted by
propagating single literal clauses which are not explicitly stored in F , as
described in Section 4.1. All this is characterized by the following complex
invariant.

Inv[reasonDef] :

((currentLevel M) > 0 −→ ∀l. l ∈ Q −→

(∃c. (reason l) = (Some c) ∧ c < |F | ∧ (isUnit (F ! c) l M̂))) ∧

(∀l. l ∈ M̂ ∧ l /∈ (decisions M) ∧ (level l) > 0 −→

(∃c. (reason l) = (Some c) ∧ c < |F | ∧ (isReason (F ! c) l M̂)))
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4.4.1. Two-watched Literal Scheme

An efficient way to check for false and unit clauses is by using the two-watched
literal scheme. It introduces the following variables to the state.

• Mappings watch1 and watch2 assign two distinguished literals to each
clause of F . This condition is imposed through the following invariants.

Inv[watchesEl] :

∀c. c < |F | −→ ∃w1 w2. (watch1 c) = (Some w1) ∧ w1 ∈ F ! c ∧

(watch2 c) = (Some w2) ∧ w2 ∈ F ! c

Inv[watchesDiffer] :

∀c. c < |F | −→ (watch1 c) 6= (watch2 c)

• The mapping watchList assigns to each literal l a list of clause indices in
F that represent clauses in which l is a watched literal. This is imposed
by the following invariants.

Inv[watchListsDef] :

∀l c. c ∈ (watchList l) ←→

c < |F | ∧
(
(watch1 c) = (Some l) ∨ (watch2 c) = (Some l)

)

It also holds that watch lists do not contain repeated clauses.

Inv[watchListsDistinct] :

∀l. (distinct (watchList l))

Next, we describe the function assertLiteral that adds the given literal (either
decision or implied) to the trail M . The variables conflictFlag, conflictClause,
Q, and reason are then updated by using the two watched literal propagation
scheme encoded by the function notifyWatches.

definition assertLiteral :: "Literal ⇒ bool ⇒ State ⇒ State"

where

"assertLiteral literal decision =

do

M ← readM;

updateM (M @ [(literal, decision)]);

notifyWatches (opposite literal)

done

"

Before we introduce and explain the function notifyWatches, we introduce
several auxiliary functions.

Functions setWatch1 and setWatch2 promote the given literal to be a new
watched literal of the given clause and then add that clause to its watch list5.

5Only setWatch1 is listed since setWatch2 is similar.

18



definition addToWatchList :: "Literal ⇒ pClause ⇒ State ⇒ State"

"addToWatchList literal clause =

updateWatchList literal (λ watchList. clause # watchList)

"

definition setWatch1 :: "pClause ⇒ Literal ⇒ State ⇒ State"

where

"setWatch1 clause literal =

do

updateWatch1 clause (Some literal);

addToWatchList literal clause

done

"

The function swapWatches swaps the two watched literals of the given clause.

definition swapWatches :: "pClause ⇒ State ⇒ State"

where

"swapWatches clause =

do

wa ← readWatch1 clause; wb ← readWatch2 clause;

updateWatch1 clause wb; updateWatch2 clause wa

done

"

The function getNonWatchedUnfalsifiedLiteral checks if there is a literal in
the given clause, other then its watched literals, which is not false in M .

primrec getNonWatchedUnfalseLiteral ::

"Clause ⇒ Literal ⇒ Literal ⇒ LiteralTrail ⇒ Literal option"

where

"getNonWatchedUnfalseLiteral [] w1 w2 M = None"

| "getNonWatchedUnfalseLiteral (literal # clause) w1 w2 M =

(if literal 6= w1 ∧ literal 6= w2 ∧ (elements M) 2¬ literal then

Some literal

else

getNonWatchedUnfalseLiteral clause w1 w2 M

)

"

Next, we explain the essence of the two-watched literal scheme encoded in
the functions notifyWatches and notifyWatchesLoop. The two-watched literal
scheme relies on the fact that a watched literal of a clause can be false in M̂
only when the clause is either true, false or unit in M . In all other cases (when
it is undefined and is not unit), both watched literals of the clause are known to
be unfalsified. This is formalized by the following invariant (with two instances
for i = 1 and i = 2).

∀c. c < |F | −→ M �¬ (watchi c) −→

(∃l. l ∈ c ∧ M � l ∧ level l ≤ level (watchi c)) ∨

(∀l. l ∈ c ∧ l 6= (watch1 c) ∧ l 6= (watch2 c) −→

M �¬ l ∧ level l ≤ level (watchi c)).

Note that the additional conditions imposed on the literal levels are required
only for the correctness of backjumping, as described in Section 4.7.

During the assertLiteral operation, the trail M gets extended by a literal
l. When this happens, all clauses that do not have l as their watched literal
still satisfy the condition of Inv[watchDef] and they cannot be unit nor false

19



in the extended trail. The only clauses that could have become unit or false
are the ones that have l as their watched literal. These clauses are exactly the
ones whose indices are contained in (watchList l). The function notifyWatches

calls the function notifyWatchesLoop which traverses this list and processes all
clauses represented by it. In order to simplify the implementation, for each
processed clause index c, watches are swapped if necessary so that it is ensured
that (watch2 c) = l and so (watch2 c) is false. The following cases may further
arise:

1. If it can be quickly detected that the clause F ! c contains a true literal
t, there is no need to change its watches, since it satisfies the condition
of Inv[watchDef] for the extended trail. In order to achieve high per-
formance, this check should be done only by using the clause index and
other data structures which are most of the time present in the processor
cache, without accessing the clause itself. The older solvers checked only
if (watch1 c) is true in M and this is the case in the implementation we
provide. Some new solvers sometimes cache some arbitrary literals of the
clause and check if they are true in M .

2. If a quick check does not detect a true literal t, then the clause is accessed
and its other literals are examined by the function getUnfalsifiedNon-

WatchedLiteral.

(a) If there exist a non-watched literal l that is not false in M , it becomes
a new (watch2 c).

(b) If all non-watched literals and (watch1 c) are false in M , then the
whole clause is false and conflictFlag is raised. The watches are not
changed, since they will both become undefined inM , if the backjump
operation is performed (see Section 4.7).

(c) If all non-watched literals are false in M , but (watch1 c) is undefined,
then the clause just became a unit clause and (watch1 c) is enqueued
in Q for propagation (if it is not already present there). The reason
for its propagation is set to c. The watches are not changed, as the
clause will have a true literal (watch1 c) after propagation.

When a literal which was not watched becomes a new (watch2 c), the literal
l stops being the watched literal of c and the clause index c should be removed
from its watch list. Since this happens many time during the traversal performed
by the notifyWatchesLoop, it turns out that it is more efficient to regenerate the
new watch list for the literal l, then to do successive remove operations instead.
This is the role of newWl parameter in the notifyWatchesLoop function.

definition notifyWatches :: "Literal ⇒ State ⇒ State"

where

"notifyWatches literal =

do

wl ← readWatchList literal;

notifyWatchesLoop literal wl []

done

"

primrec notifyWatchesLoop ::

"Literal ⇒ pClause list ⇒ pClause list ⇒ State ⇒ State"

where

"notifyWatchesLoop literal [] newWl =
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updateWatchList literal (λ wl. newWl)"

| "notifyWatchesLoop literal (clause # list’) newWl =

do

w1’ ← readWatch1 clause; w2’ ← readWatch2 clause;

if (Some literal = w1’) then (swapWatches clause);

(case w1’ of Some w1 ⇒ (case w2’ of Some w2 ⇒ (

do

M ← readM;

(if literalTrue w1 (elements M) then

notifyWatchesLoop literal list’ (clause # newWl)

else

do

F ← readF;

let ul = getNonWatchedUnfalseLiteral (F!clause) w1 w2 M in

(case ul of

Some l’ ⇒
do

setWatch2 clause l’;

notifyWatchesLoop literal list’ newWl

done

| None ⇒
(if (literalFalse w1 (elements M)) then

do

updateConflictFlag True;

updateConflictClause clause;

notifyWatchesLoop literal list’ (clause # newWl)

done

else

do

Q ← readQ;

if (¬ w1 el Q) then (updateQ (Q @ [w1]));

updateReason w1 clause;

notifyWatchesLoop literal list’ (clause # newWl)

done

)

)

done

)

done

)))

done

"

The invariants Inv[watchListsDef] and Inv[watchesEl] together guarantee
that for each clause there will always be two watched literals (hence, the missing
None branches in the case expressions are indeed not needed).

4.5. Unit Propagation

The operation of unit propagation asserts unit literals of unit clauses of F .
Since the two-watched literal scheme is complete for false and unit clause detec-
tion (as the function assertLiteral preserves Inv[conflictFlagDef] and Inv[QDef]),
all unit literals of clauses in F can be found in Q. This makes unit propagation
a rather trivial operation — literals are picked from Q and asserted until Q is
emptied or until a conflict is detected.

definition applyUnitPropagate :: "State ⇒ State"

where

"applyUnitPropagate =

do
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Q ← readQ; assertLiteral (hd Q) False;

Q’ ← readQ; updateQ (tl Q’)

done

"

function (domintros, tailrec) exhaustiveUnitPropagate :: "State ⇒ State"

where

"exhaustiveUnitPropagate =

do

conflictFlag ← readConflictFlag; Q ← readQ;

(if (¬ conflictFlag ∧ Q 6= []) then

do

applyUnitPropagate;

exhaustiveUnitPropagate

done

)

done

"

by pat completeness auto

Notice that the termination of the exhaustiveUnitPropagate function is non-
trivial, since it is defined by using the general recursion and it will be discussed
later.

4.6. Decision Heuristics

When unit propagation exhausts, no new literal can be inferred and a kind
of backtracking search must be performed. This search is driven by the guesses
made by the decision heuristic. The heart of the decision heuristic is the se-

lectLiteral function whose role is to pick a literal whose variable is in the fixed
set of decision variables decisionVars, but which is not yet asserted in M . The
literals are selected based on some given criteria. Many different criteria can be
used and experimental evidence shows that this heuristic is often crucial for a
solver’s performance. However, in this paper we will specify it only by its effect
given by the following postcondition.

consts selectLiteral :: "Variable set ⇒ State ⇒ Literal × State"

axioms selectLiteral def:

"let diff = decisionVars \ vars (elements (getM state)) in

diff 6= ∅ −→ var (selectLiteral decisionVars state) ∈ diff"

definition applyDecide :: "Variable set ⇒ State ⇒ State"

where

"applyDecide decisionVars =

do

l ← selectLiteral decisionVars;

assertLiteral l True

done

"

4.7. Conflict Handling

The conflict handling procedure consists of the conflict analysis, learning
and backjumping and it is executed whenever a conflict occurs at a decision
level higher then zero (when the conflict occurs at the decision level zero, then
the formula is determined to be unsatisfiable). After the conflict handling pro-
cedure, a top portion of trail is removed and a non-conflicting state is restored.
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Unlike the classic backtrack operation which would remove only the last decision
made, the backjump operation performs a form of non-chronological backtrack-
ing which undoes as many decisions as possible. Backjumping is guided by a
backjump clause, which is a consequence of the formula F0 and which corre-
sponds to the variable assignment that lead to the conflict. Backjump clauses
are constructed in the process called conflict analysis as described in Section
4.7.1. When the backjump clause is constructed, the top literals from the trail
M are removed until the backjump clause becomes a unit clause in M . From
that point, its unit literal is propagated and the search process continues.

Several components of the solver state are used during the conflict handling
procedure.

- The clause C represents the current conflict analysis clause, which becomes
the backjump clause once the conflict analysis process is finished. This
clause is characterized by the following invariants6.

Inv[CFalse] :
conflictFlag −→ M �¬C

Inv[CEntailed] :
conflictFlag −→ F0 � C

The following variables represent different aspects of the clause C and are
cached in the solver state only for performance reasons.

- The literal Cl is the last asserted literal of C in the trail M .

Inv[ClDef] :

conflictFlag −→ (isLastAssertedLiteral Cl C M)

- The literal Cll is the last asserted literal of C \ Cl.

Inv[CllDef] :

conflictFlag ∧ C \ Cl 6= [] −→ (isLastAssertedLiteral Cll (C \ Cl) M)

- The number Cn is the number of literals on the highest decision level of
the trail M .

Inv[CnDef] :

conflictFlag −→

Cn = (length (filter (λ l. level l M = currentLevel M) (remdups C)))

6All invariants that are relevant for the conflict handling process need to hold only until the
conflict has been resolved. Therefore, the are guarded with the condition conflictFlag −→
so that they can be treated as other global invariants.
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4.7.1. Conflict Analysis

In order to implement the conflict analysis procedure, we introduce several
auxiliary functions.

The function findLastAssertedLiteral is used to set the value of Cl based on
the current values of C and M .

definition findLastAssertedLiteral :: "State ⇒ State"

where

"findLastAssertedLiteral =

do

C ← readC; M ← readM;

updateCl (getLastAssertedLiteral (opposite C) (elements M))

done

"

The function countCurrentLevelLiterals is used to set the value of Cn based
on the current values of C and M .

definition countCurrentLevelLiterals :: "State ⇒ State"

where

"countCurrentLevelLiterals =

do

M ← readM; C ← readC;

let cl = currentLevel M;

let cll = filter (λ l. elementLevel (opposite l) M = cl) C;

updateCn (length cll)

done

"

Since for some literals asserted at the decision level zero there are no reason
clauses in F , it is required that the clause C does not contain literals from the
decision level zero. Also, it is reasonable to require that the clause C does not
contain repeated literals. The function setConflictAnalysisClause sets the clause
C to the given one, but first it preprocesses it by removing duplicates and literals
asserted at decision level zero. It also caches the values of Cl and Cn.

definition setConflictAnalysisClause :: "State ⇒ State"

where

"setConflictAnalysisClause clause =

do

M ← readM;

let oppM0 = oppositeLiteralList (elements (prefixToLevel 0 M));

updateC (remdups (list diff clause oppM0));

findLastAssertedLiteral; countCurrentLevelLiterals

done

"

The conflict analysis algorithm can be described as follows:

- The conflict analysis process starts with a conflict clause itself (the clause
of F that is false in M) and the clause C is initialized to it. The function
applyConflict initializes the clause C to the current conflict clause.

definition applyConflict :: "State ⇒ State"

where

"applyConflict =

do

F ← readF; conflictClause ← readConflictClause;

setConflictAnalysisClause (F ! conflictClause)

done

"
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- Each literal contained in the current clause C is false in the current trail
M and is either a decision made by the search procedure or the result
of some propagation. For each propagated literal l, there is a clause c
that caused the propagation. These clauses are called reason clauses and
(isReason c l M̂) holds. Propagated literals from the current clause C are
then replaced (we say explained) by other literals from the reason clauses,
continuing the analysis backwards. The explanation step can be seen as
a resolution between the backjump and the reason clause. The function
applyExplain performs this resolution.

definition applyExplain :: "Literal ⇒ State ⇒ State"

where

"applyExplain literal =

do

reason’ ← readReason literal;

(case reason’ of Some reason ⇒
do

C ← readC; F ← readF;

let res = resolve C (nth F reason) (opposite literal);

setConflictAnalysisClause res

done

)

done

"

Notice that Inv[reasonDef] guarantees that each propagated literal has
an assigned reason clause and that the missing None branch in the case
expression is not necessary.

- The conflict analysis procedure we implemented always explains the last
asserted literal of C and the procedure is repeated until the isUIP condition
is fulfilled, i.e., until there is exactly one literal in C such that all other
literals of C are asserted at strictly lower decision levels. This condition
can be easily checked by examining the value of Cn. The implementation
of this technique is given by the function applyExplainUIP.

function (domintros, tailrec) explainUIP :: "State ⇒ State"

where

"explainUIP =

do

Cn ← readCn;

(if (Cn 6= 1) then

do

Cl ← readCl; applyExplain Cl;

explainUIP

done

)

done

"

by pat completeness auto

Notice that this function is defined by general recursion so its termination
is non-trivial and it will be discussed later.
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4.7.2. Learning

During the learning process, redundant clauses that are logical consequences
of the initial formula F0 are learned. Learned clauses containing multiple literals
are added to the F , while single literal clauses extend the level zero of the trail
M . In our implementation (as it is often the case in modern SAT solvers), the
only clauses that are being learned are the backjump clauses. Since we require
that all clauses in F have more than two different literals, if a backjump clause
C contains only one literal, then learning is not explicitly performed (it is per-
formed implicitly as a part of the backjumping operation). The implementation
of learning is given by the function applyLearn. After extending F by C, the
watch literals for the clause C are set in a way which ensures Inv[watchDef]. In
the same time, the literal Cll is computed and cached.

definition applyLearn :: "State ⇒ State"

where

"applyLearn =

do

C ← readC; Cl ← readCl;

(if (C 6= [opposite Cl]) then

do

F ← readF; M ← readM;

updateF (F @ [C]);

let l = Cl;

let ll = getLastAssertedLiteral (removeAll l (opposite C)) (elements M);

let clauseIndex = length F;

setWatch1 clauseIndex (opposite l);

setWatch2 clauseIndex (opposite ll);

updateCll ll

done

)

done

"

4.7.3. Backjumping

The backjump operation consists of removing literals from M up to a min-
imal level in which the backjump clause C becomes a unit clause, after which
its unit literal Cl is propagated. This level is found by using the function get-

BackjumpLevel.

definition getBackjumpLevel :: "State ⇒ nat × State"

where

"getBackjumpLevel =

do

C ← readC; Cl ← readCl;

(if C = [opposite Cl] then

return 0

else

do

Cll ← readCll; M ← readM;

return (elementLevel Cll M)

done

)

done

"

The function applyBackjump performs the backjump operation itself.
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definition applyBackjump :: "State ⇒ State"

where

"applyBackjump =

do

level ← getBackjumpLevel; Cl ← readCl; M ← readM; F ← readF;

updateConflictFlag False;

updateQ [];

updateM (prefixToLevel level M);

if (level > 0) then updateReason (opposite Cl) (length F - 1);

assertLiteral (opposite Cl) False

done

"

Notice that after taking the prefix of M , it is concluded that conflict has
been successfully resolved (so conflictFlag is unset), and that there are no unit
clauses in F with respect to the taken prefix of M (so Q is cleared). For these
conclusions to be valid, it is required that no new decisions are made once M is
in a conflicting state. Also, unit propagation has to be exhaustive and no new
decisions should be made while there are unit clauses in F . These conditions
are imposed by the following invariants.

Inv[noDecisionsWhenConflict] :

∀level ′ < (currentLevel M) −→ (prefixToLevel level ′ M) 2¬F

Inv[noDecisionsWhenUnit] :

∀level ′ < (currentLevel M) −→

¬∃c l. c ∈ F ∧ (isUnitClause c l (prefixToLevel level ′ M))

5. Highlights of the Total Correctness Proof

The invariants listed in Section 4 are sufficient to prove the total correctness
of the procedure. Proving that they are preserved by all solver functions was
the most involved part of the total correctness proof. These proofs are available
[Mar08] and we will not list them here.

Next we will describe the techniques used to prove the termination of our
main solver function solve. We will also prove its total correctness theorem.

5.1. Termination

In the code presented in this paper, only the functions exhaustiveUnitProp-

agate, explainUIP, and solveLoop are defined by using general recursion and it
is not obvious if they are terminating. The only function that end-users of the
solver are expected to call directly is the function solve as it is the solver’s only
entry-point. This means that all three functions defined by general recursion are
called only indirectly by the function solve and all parameters that are passed to
them are computed by the solver. Therefore, these functions can be regarded to
be partial functions and it is not necessary to show that they terminate for all
possible values of their input parameters. It suffices to show that they terminate
for those values of their input parameters that could actually be passed to them
during a solver’s execution starting from the initial state.

We use Isabelle’s built-in features to model this kind of partiality [Kra08].
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1. Notice that all three functions are defined by using the tail recursion and
annotated by the directive tailrec. This is a very important feature,
and Isabelle can accept these functions whether they terminate or not.
However, in order to generate executable code, the (partial) termination
of these functions must be shown.

2. When an n-ary function f is defined by using a general recursion, a pred-
icate f dom which tests if an n-tuple (a1, . . . , an) is in the domain of f

(i.e., if f terminates on input (a1, . . . , an)) is automatically generated. If
the function definition is annotated by the directive domintros, Isabelle
generates a theorem of the form

g −→ (f dom (f1(a1), . . . , fn(an))) −→ (f dom (a1, . . . , an)),

for each recursive call f(f1(a1), . . . , fn(an)) in the definition of f, where
g is a guard for this recursive call. Until the termination of f is proved
i.e., until f is proved to be total, the usual induction scheme theorem
for the function f (which would be called f.induct) cannot be proved
and used. However, when f is defined a weaker, partial induction scheme
theorem (called f.pinduct) is automatically proved. It differs from the
usual induction scheme only because it adds the domain predicate f dom

both to the induction base and to the induction steps. These domain
predicates are then carried over and assumed in all lemmas about the
function f which are proved by (the partial) induction. Still, in order
to complete the whole correctness proof, at one point they have to be
discharged. This is done by proving that all inputs passed to the function
f imply the domain predicate.

In our case, we know that invariants are preserved throughout any solver’s
run and that each state for which our solver functions are called satisfies all given
invariants. We show that some of these invariants imply the domain predicates,
i.e., that our three functions defined by general recursion terminate for states
in which these invariants hold.

As an illustration, we will outline the proof that the function exhaustive-

UnitPropagate (p22) terminates if its input satisfies certain invariants.
In order to prove this, we introduce a well-founded ordering of trails such

that applications of applyUnitPropagate advances, i.e., decreases the trail, in
that ordering. So, let us first define an ordering ≻lit of marked literals (it is
trivially well-founded).

Definition 23. l1 ≻
lit l2 ←→ (isDecision l1) ∧ ¬(isDecision l2)

Now we can introduce an ordering of trails, which will be used as a basis for the
ordering that we are constructing.

Definition 24.

M1 ≻trail M2 ←→ M1 ≻
lit

lex M2,

where ≻lit

lex
is a lexicographic extension of relation ≻lit.

The function applyUnitPropagate decreases the trail in this ordering (trivially, by
the definition of lexicographic extension), but, unfortunately, this ordering need
not be well-founded. However, since invariants hold in every state during the
solver’s operation, we can make a restriction of ≻trail that is also well-founded.
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Definition 25.

M1 ≻
r

trail
M2 ←→ (distinct M1) ∧ (vars M1) ⊆ V bl

(distinct M2) ∧ (vars M2) ⊆ V bl ∧

M1 ≻trail M2

This is the ordering we were looking for and now we can prove a lemma
saying that if the state satisfies certain invariants, then it is in the domain of
the applyUnitPropagate function (i.e., that this function terminates when applied
to that state).

Lemma 1. If the set decisionVars is finite and the state s is such that:

(a) Inv[Mconsistent] (§2) and Inv[Mdistinct] (§3) hold in s,

(b) Inv[Mvars] (§4), Inv[Fvars] (§5), and Inv[Qvars] (§11) hold in s,

(c) Inv[conflictFlagDef] (p16), Inv[QDef] (p17), and Inv[Qdistinct] (p17) hold
in s,

(d) Inv[watchListsDef] (p18) and Inv[watchListsDistinct] (p18) hold in s,

(e) Inv[watchesEl] (p18), Inv[watchesDiffer] (p18) and
Inv[watchDef] (p19) hold in s,

then the function exhaustiveUnitPropagate terminates when applied to s i.e.,
(exhaustiveUnitPropagate dom s).

Proof: If Q is empty or conflictFlag is raised in the state s, then the function
exhaustiveUnitPropagate terminates and s is trivially in its domain. So, let us
assume that Q is not empty and conflictFlag is false.

The proof is carried by well-founded induction on the ordering ≻r

trail
. As-

sume, as an inductive hypothesis, that the statement holds for all states s′

for which s ≻r

trail
s′. Let s′ = (applyUnitPropagate s). Since invariants hold

in s and are preserved by the applyUnitPropagate function, they hold in s′ as
well7. Since the trail M in s′ is extended by a single literal, by the definition of
≻r

trail
, it holds that the s ≻r

trail
s′. So, by inductive hypothesis, it holds that

(exhaustiveUnitPropagate dom s′). The lemma then follows from the domain
introduction theorem exhaustiveUnitPropagate.domintros:

¬conflictFlags ∧ Qs 6= [] −→

(exhaustiveUnitPropagate dom (applyUnitPropagate s)) −→

(exhaustiveUnitPropagate dom s).

�

Termination (on relevant inputs) of the explainUIP and solveLoop functions
is proved in a similar way. The termination proof for solveLoop function uses the
same ordering ≻r

trail
and the termination proof for explainUIP uses the following

well-founded ordering of clauses ≻M

clause
parametrized by the trail M .

7Note that only Inv[distinctM], and Inv[varsM] need to hold in order to use the order-
ing ≻r

trail
. However, we had to assume many additional invariants in the premises of this

lemma, because they are needed to show that these three key invariants are preserved when
applyUnitPropagate is applied.
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Definition 26.

C1 ≻
M

clause C2 ←→ {remdups C1} ≻
M̂

mult {remdups C2},

where {. . .} denotes the multiset of list elements and ≻M̂

mult
is the multiset ex-

tension of the ordering ≻M̂ induced by the list M̂ (e1 ≻
M̂ e2 iff e1 occurs after

e2 in the list M̂).

5.2. Total Correctness

Total correctness of the solve function is given by the following theorem.

Theorem 1.

((solve F0) = True ∧ (sat F0)) ∨ ((solve F0) = False ∧ ¬(sat F0))

Assuming that all invariants hold in each state reached during the solve

function execution, the proof of Theorem 1 relies on the following two soundness
lemmas, which correspond to the two places in the solver code where SATFlag
is changed.

Lemma 2. If in some state s it holds that:
(a) Inv[equivalent] (p13) holds in s,
(b) Inv[conflictFlagDef] (p16) holds in s,
(c) conflictFlag is true in s,
(d) (currentLevel M) = 0 in s,

then it holds that ¬(sat F0).

Proof: From (currentLevel M) = 0 it follows that (prefixToLevel 0 M) = M .

Hence, from Inv[equivalent] it follows that F @ 〈M̂〉 ≡ F0. Since from conflictFlag
and Inv[conflictFlagDef] it holds that M �¬F , by monotonicity it also holds

that M �¬F @ 〈M̂〉. Since F @ 〈M̂〉 � M , the formula F @ 〈M̂〉 is false in a
valuation that it entails, so is unsatisfiable. Since F0 is logically equivalent to
F @ 〈M̂〉, it is also unsatisfiable. �

Lemma 3. If in some state s it holds that:
(a) (vars F0) ⊆ decisionV ars,
(b) Inv[Mconsistent] (p12) holds in s,
(c) Inv[Fvars] (p13) holds in s,
(d) Inv[equivalent] (p13) holds in s,
(e) Inv[conflictFlagDef] (p16) holds in s,
(f) conflictFlag is false in s,

(g) (vars M̂) ⊇ decisionV ars in s,

then (sat F0) and (model M̂ F0) hold.

Proof: From Inv[Fvars], it follows that (vars F ) ⊆ (vars F0) ∪ decisionV ars.
With (vars F0) ⊆ decisionV ars, it holds that (vars F ) ⊆ decisionV ars. With

(vars M̂) ⊇ decisionV ars, it holds that (vars F ) ⊆ (vars M̂) and M̂ is a total
valuation with respect to the variables of F . Therefore, it is either the case
that M̂ �¬F or M̂ � F . Since conflictFlag is false, by Inv[conflictFlagDef] it

holds that M̂ 2¬F , so it must be the case that M̂ � F . It trivially holds that

M̂ � 〈 ̂prefixToLevel 0 M〉 and M̂ is consistent by Inv[Mconsistent]. Therefore

M̂ is a model for F @ 〈 ̂prefixToLevel 0 M〉. Since F0 ≡ F @ 〈 ̂prefixToLevel 0 M〉,

it holds that M̂ is also a model for F0 and (sat F0) holds. �
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6. Discussion on Proof Management

Although it is hard to quantify the efforts invested in this work, we can
estimate it to be around one man-year. The proof scripts are around 25000 lines
of Isabelle code and the generated PDF proof documents are around 700 pages
long. These numbers are of course heavily dependent on the indentation style
used. Proof-checking time by Isabelle is under 5 minutes on a 1.6GHz/512Mb
RAM machine running Linux. We estimate that careful investigation of the
proof text and its reorganization mainly by extracting some common parts of
different proofs into lemmas could lead to 10-20 percent reductions.

During this verification effort some interesting technical issues arose. In
order to make such a large-scale verification effort possible, it was necessary to
introduce some kind of modularity to the formalization. The crucial step in this
direction was to prove the properties of abstract state transition systems for
SAT [NOT06, KG07] and then use these proofs in the correctness proof of the
low-level implementation presented here. A good direction to follow would be
to define internal data-structures (for example the assertion trail) as abstract
data-types (ADT) with some desired properties given axiomatically. Although,
unfortunately, this has not been explicitly done in our formalization, this idea
has been followed to some extent. Namely, after introducing basic definitions,
we showed lemmas that could be regarded as axioms of the ADT and all further
proofs relied only on those lemmas, without using the low-level properties of the
implementation. This, of course, enables changing the low-level implementation
into a more efficient one without changing much of the whole correctness proof.
We think that explicit encoding the ADT approach (for example by using type-
classes or locales [NPW02]) would lead to even more flexible formalization and
is a step in a right direction.

When proving properties about recursively defined functions we had a di-
lemma whether to repeat the same induction scheme in proofs of many similar
lemmas (one for each property of the recursive function) or to formulate one
bigger lemma that groups all assumptions and conclusions for several properties
that are being shown. We took the second approach and reduced the total
number of lemmas and the total size of proofs, but the price that had to be
payed is that we lost track of which assumptions are effectively used for proving
a specific conclusion. For example, most of our high-level lemmas that show
that invariants are preserved by the function calls assume that all invariants
hold before the function call and show that all invariants hold after the function
call. The only way to find out which invariants are necessary to hold before the
function call so that a specific invariant holds after it is reading the proof texts
which can be a tedious task.

7. Related work

First steps towards verification of SAT and related SMT solvers have been
recently made. Shankar has mechanically proved soundness, completeness, and
decidability of propositional logic (by means of a satisfiability solver) [Sha85].
Zhang and Malik have informally proved correctness of a modern SAT solver
[ZM03]. Abstract state transition systems [NOT06, KG07] describe high-level
operation of modern SAT solvers and authors have informally proved their cor-
rectness. Marić and Janičić have mechanically verified the classic DPLL proce-
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dure by shallow embedding into Isabelle/HOL [MJ09b]. Lescuyer and Conchon
have mechanically verified a classic DPLL based SAT solver within the system
Coq [LS08]. Shankar and Vaucher have mechanically verified a higher level
description of a modern DPLL procedure within the system PVS. Marić has
previously given [Mar09a] a tutorial exposure of the modern SAT solving tech-
niques (both high and low level) with correctness properties formulated in a
Hoare-style framework and proved (to some extent) mechanically within the
system Isabelle.

To the best of our knowledge, this is the first paper that presents a full me-
chanical proof of the total correctness (soundness, termination and complete-
ness) of a SAT solver implementation that covers both modern high-level SAT
solving algorithms (e.g., conflict-driven learning) and low-level implementation
techniques (most notably the two-watched literal propagation scheme).

8. Further Work

The specification of the SAT solver given in this paper is such that a fully
executable code in a functional language can be automatically generated from
it, providing that an executable decision heuristic is supplied. However, the
efficiency of the generated code must still be improved, if we want to get a
competitive solver.

First, there are several low-level algorithmic improvements that have to be
made. For example, in the current implementation, checking if a literal is true
in a trail M requires performing a linear-time scan through the list. Most
real-world solvers cache truth values of all literals in an array and so allow a
constant time check. Also, the conflict analysis phase is expressed here in a bit
more abstract way then in implementations of MiniSat style solvers.

Next, some higher-level heuristics have to be implemented more carefully.
For example, we have only made tests with a trivial decision heuristic that
selects a random undefined literal, but in order to have a usable solver, a more
involved decision heuristic (e.g., the MiniSat one) should be used. It would also
be useful to implement forgetting and restarting techniques [KG07, NOT06].

Although these modifications require to invest more work, we believe that
they are straightforward. However, the most problematic issue is the fact that
because of the pure functional nature of HOL no side-effects are possible and
there can be no destructive updates of data-structures. It is possible to adapt
the code generator to generate monadic Haskell and imperative ML code which
would lead to huge efficiency benefits since it allows mutable references and
arrays. We hope that with these modifications, the generated code could become
comparable to real-world SAT solvers and this would be the main direction of
our further work.

9. Conclusions

In this paper, we have presented a formalization and a total correctness
proof of a MiniSAT-like SAT solver within the system Isabelle/HOL. The solver
is based on the DPLL procedure and employs most state-of-the art SAT solving
techniques including the conflict-guided backjumping, clause learning and the
two-watched unit propagation scheme. The described solver specification can
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serve as a basis for implementation of an efficient and correct SAT solver. One
possible approach for that would be to manually implement a SAT solver (in an
imperative programming language) by strictly following the descriptions of the
solver given in this paper. However, the highest possible level of trust could be
achieved only if fully executable code (in a functional programming language)
is automatically generated by using the Isabelle’s built-in code generator. Al-
though this has been done, the efficiency of generated code should further be
improved and that is the field of our future research. We hope that this work
can facilitate better understanding of modern SAT solvers. The final product of
this research will be a trusted and efficient SAT solver that can be used either
independently or as a kernel for checking results of other untrusted verifiers.
We also hope that this work shows that, thanks to recent advances in both au-
tomated and semi-automated software verification technology, it is possible to
have a fully verified implementation of a very non-trivial software system.
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[Mar09a] F. Marić. Formalization and Implementation of SAT solvers. Jour-
nal of Automated Reasoning 43(1), pp. 81–119, Springer, 2009.
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