
URBiVA: Uniform Reduction to Bit-Vector
Arithmetic

Filip Marić and Predrag Janičić

Faculty of Mathematics, Studentski trg 16, 11000 Belgrade, Serbia
filip@matf.bg.ac.rs janicic@matf.bg.ac.rs

Abstract. We describe a system URBiVA for specifying and solving a
range of problems by uniformly reducing them to bit-vector arithmetic
(bva). A problem description is given in a C-like specification language
and this high-level specification is transformed to a bva formula by sym-
bolic execution. The formula is passed to a bva solver and, if it is satisfi-
able, its models give solutions of the problem. The system can be used for
efficient modelling (specifying and solving) of a wide class of problems.
Several state-of-the-art solvers for bva are currently used (Boolector,
MathSAT, Yices) and additional solvers can be easily included. Hence,
the system can be used not only as a specification and solving tool, but
also as a platform for evaluation and comparison between bva solvers.

1 Introduction

In recent years, propositional satisfiability (sat) and satisfiability modulo theory
(smt) testing have successfully been applied for solving different problems. Huge
advances have been made, and state-of-the art sat and smt solvers can quickly
solve huge problem instances coming from various industrial applications. The
progress in this community is strengthen by standardization initiatives like SMT-
lib1 and by annual competitions like SAT-Comp2 and SMT-Comp.3 One of the
smt theories that has been extensively used in software and hardware verification
lately is the theory of bit-vector arithmetic (bva) [4]. Informally, bit-vectors
represent fixed-length vectors of bits over which operations are performed as
over (finite-precision) integers (either unsigned or two’s complement encoded
signed). Syntactically, the quantifier-free fragment of the first-order theory of
bit-vector arithmetic includes arithmetic operators (+, *, -, /, %), relational
operations (==, !=, <, >, <=, >=), bit-wise operators (&, |, ^, <<, >>), logical
operators (&&,||, !), operators for bit-extraction and concatenation, etc. All
arithmetic operators are finite-precision and are applied only over bit-vectors of
the same width. The semantics of bva is introduced in a straightforward manner
[1]. The satisfiability problem for the quantifier-free fragment of bva is defined
as usual: for a given formula F , check whether there is a variable assignment
1 http://combination.cs.uiowa.edu/smtlib/
2 http://www.satcompetition.org/
3 http://www.smtcomp.org

which makes F true. Although arithmetic over arbitrary precision integers with
addition and multiplication is undecidable, bva is decidable thanks to the finite
domain.4 Additional operators can be defined (in a reasonable manner) without
compromising decidability. It can be simply proved that this decidability problem
is NP-complete. bva is suitable for representing and reasoning about programs’
properties because it operates on the word-level, in compliance with standard
hardware and software operations over integers.

Most (if not all) reported applications of bva are in the domain of software
and hardware verification. We argue that potentials for using bva solvers are
much wider. In this paper, we describe a specification language and a tool UR-
BiVA that can be used for solving not just verification problems, but a much
wider range of problems (including, for instance, many classes of constraint sat-
isfaction problems). The approach combines features of declarative and imper-
ative programming. It automatically transforms problem specifications to bva
and solves generated formulae by one of underlying bva solvers. This general
reduction approach can be beneficial since hand-crafting bva formulae that en-
code specific problems is typically error-prone. As we are aware of, there are still
no other tools that uniformly reduce problem specifications to bva.

2 Problem Specification

The class of problems that are considered are problems of the general form: find
(if it exists) an assignment S which satisfies some given constraints (variations
can require only checking if such an assignment exists, finding all assignments
that meet the given conditions, etc). Constraints can be specified by an impera-
tive test that checks whether S (assuming that S is given in advance) is indeed
a solution. Therefore, the approach is declarative: only this test is given (instead
of a solving procedure). It is often much easier to write such a test, than to write
an efficient program that checks satisfiability.

The specification language is C-like and provides all standard arithmetic, bit-
wise, logical and relational operators, and the ternary conditional operator (?:).
Two types of variables are supported — numerical (with identifiers starting with
n) and Boolean (with identifiers starting with b). For simplicity, variables are not
declared, but introduced dynamically. All operators can be applied to variables of
both types (implicit type conversions are performed whenever necessary). User-
defined functions are also supported. The assert statement specifies a condition
(a Boolean expression) that must be satisfied. It triggers the underlying solver
to search for an assignment to the unknowns which satisfies the assertion. The
assert_all statement searches for all such assignments.

Let us illustrate the specification language by considering the problem of
finding all Gray codes of given length, i.e., finding all permutations of integers
from 0 to dim−1 such that each successive pair of integers differs exactly in one
bit in their binary representation. A possible specification of this problem is:
4 Indeed, for a given formula F to be tested for satisfiability, one can test all possible

assignments to variables that appear in F and check if any of them satisfies F .

nDim = 8;

bDomain = true;

for (ni = 0; ni < nDim; ni++)

bDomain &&= 0 <= na[ni] && na[ni] < nDim;

bAllDiff = true;

for (ni = 0; ni < nDim-1; ni++)

for (nj = ni+1; nj < nDim; nj++)

bAllDiff &&= na[ni] != na[nj];

bGray = true;

for (ni = 0; ni < nDim - 1; ni++) {

nDiff = na[ni] ^ na[ni+1];

bGray &&= !(nDiff & (nDiff - 1)) && (nDiff != 0);

}

assert_all(bDomain && bAllDiff && bGray);

The vector na is assumed to contain the required permutation (and all such
vectors should be found). The code checks if all required conditions are met. The
auxiliary variable bDomain encodes that all elements of na are between 0 and
dim, bAllDiff encodes that all elements of na are different, and bGray encodes
that all successive pairs differ in exactly one bit.

Notice that specifications (implicitly) contain the information on the vari-
ables that are unknown and have to be assigned so that the given constraints
are satisfied. Those are the variables that appear within expressions/statements
(not on the left-hand side of the assignment operator) before they were defined
(in this example, na[0], . . . , na[7]). So, the above code is a full and precise spec-
ification of the problem, up to the domains of the variables and the semantics
of operators (discussed in the next section).

There are certain restrictions of the specification language: conditions in the
if, while and for statements and indices for accessing array elements must
be ground and not symbolic values. The restriction for if is relaxed by the
presence of the conditional operator that can take symbolic arguments, while
the restriction for arrays and loops cannot be removed (as it would require e.g.,
undefinite loop unrolling).

3 Problem Solving

Specifications given in the language outlined above are used as a starting point
in problem solving. Namely, a problem specification is symbolically executed
(for a given fixed bit-width) in order to build a bva encoding of the problem.
The unknowns are represented by bva variables and results of operations are
represented by bva formulae. Finally, an assertion generates a bva formula for
which a satisfying assignment is to be found. Any satisfying valuation (if it

exists) for that formula yields (ground) values for the unknowns that meet the
specification, i.e., a solution to the problem.

The semantics of specification language is not equal, but rather parallel to
the standard semantics of imperative programming languages. Namely, in the
standard semantics, expressions (numerical and Boolean) are always evaluated
to ground values and variables must be defined before they are accessed. In the
proposed semantics, expressions may be evaluated to ground or symbolic values
(bva formulae) and accessing undefined variables is allowed. In the URBiVA
tool, the standard semantics of unsigned bva is assumed. The domain of Boolean
variables is {false, true} and the domain of numerical variables are finite precision
unsigned integers from a domain [0, 2l − 1], for a given l (so, arithmetic modulo
2l is assumed).5 Constant expressions are always evaluated to ground values
(for example, after the statement nA = 3 + 2*5;, the variable nA is assigned
the ground value 13, instead of a bva formula). Note that even expressions
involving symbolic values need not necessarily be evaluated to symbolic values
(for example, after the statement bX = bY && false;, the variable bX can be
assigned the ground value false, even if the variable bY had symbolic value).

Let us illustrate the solving process on the following specification:

nB = nA + 3;

nB = 2 * nB;

assert(nA + nB == 12);

Since, in the first line of the specification, the variable nA was accessed before it
was defined, it is associated with a fresh bit-vector variable A. In the same line,
the formula A+3 is assigned to nB. Similarly, in the second line, the variable nB
is assigned the symbolic value 2 * (A+3). Finally, the assert command asserts
that nB + nA == 12 is true, which gives a bva formula A + 2*(A+3) == 12
which is tested for satisfiability. It is true if A is assigned the value 2, so a
solution to the given problem is nA == 2 (notice that the variable nA was the
only unknown in the specification, i.e., only its value is required).

4 Implementation

The system URBiVA6 is implemented in the programming language C++. The
whole system has a flexible architecture and is relatively small. An input speci-
fication is parsed into an abstract syntax tree (AST). The interpreter traverses
the AST, performs type checking and conversions and executes statements, while
keeping a list of unknown variables, and a symbol table containing current vari-
able values. Variable values are represented using a specialized data structure:
ground values (bva constants) are represented by finite length bit-arrays (im-
plemented as byte arrays) and symbolic values (bva formulae) are represented

5 The system can be also applied for any finite-precision signed or unsigned, integer or
real numbers, as long as the underlying bva solver provides support for these types.

6 The source code with example specifications (but without third-party solvers, due to
specific licensing) is available online from: http://argo.matf.bg.ac.rs/software/.

by term-sharing data structures (DAGs). DAG data structures for representing
symbolic values can be either our custom structures, or the ones offered by an
underlying solver’s API. Using underlying solvers’ native data structures helps
the integration of the system (and avoids using of external files and textual
formats, e.g., SMT-lib). The direct communication via API also facilitates the
search for all models: once a model is found, a corresponding blocking clause is
constructed and passed to the solver via API and the search for the next model
can be (incrementally) started. Currently supported underlying solvers are: our
custom solver based on bit-blasting [5] that uses our sat solver ArgoSAT [6],
Boolector7 [2], Yices8 and MathSAT9 [3].

5 Examples and Experimental Results

In this section we give several examples that illustrate the problem modelling
and problem solving within the URBiVA system and that we used for a small
comparison between the underlying solvers (as yet, larger specifications related
to real-world applications have not been considered). We consider one number-
theory problem, two combinatorial problems, and one problem from software
verification.

Fermat’s triples modulo m. By the Fermat’s last theorem, there are no nat-
ural numbers a, b, c such that an + bn = cn and n > 2. However, this does
not hold in arithmetic modulo m. The problem of determining the number
of solutions of the given equation can be simply stated in our specification
language (for a concrete n, say 3) as follows:
function nPower(nx, np) {
nPower=1;
for(ni = 0; ni < np; ni++)
nPower *= nx;

}
assert_all(nPower(na,3) + nPower(nb,3) == nPower(nc,3));

This specification can solved by the URBiVA system using k-bit represen-
tation when arithmetic modulo 2k is considered.

Gray Codes Problem The Gray codes problem is described and its specifi-
cation is given in Section 2. The parameter of the problem is dim and it
can be solved for different bit-widths (sufficient for storing values from 0 to
dim− 1).

Magic Square Problem A magic square of order n is a n×n matrix containing
the numbers from 1 to n2, with each row, column and both diagonals equal
the same sum. The problem is to find one (or all, unique up to rotations and
reflections) magic square(s) of order n.10

7 http://fmv.jku.at/boolector/
8 http://yices.csl.sri.com
9 http://mathsat.itc.it/

10 For lack of space, we do not give a specification of this problem here, but it is available
within the URBiVA distribution.

Software Verification Example — Bit Counting Bit count (or population
count) is the problem of counting all set bits of an integer. It can be imple-
mented in a number of ways, two of which are given here for 16-bit integers,
specified in our language (almost in verbatim as in the C programming lan-
guage). The URBiVA tool can be used to show that these two specifications
agree on all inputs, i.e., the asserted expression is unsatisfiable.

function nBC1(nX) {

nBC1 = 0;

for (nI = 0; nI < 16; nI++)

nBC1 += nX & (1 << nI) ? 1 : 0;

}

function nBC2(nX) {

nBC2 = nX;

nBC2 = (nBC2 & 0x5555) + (nBC2>>1 & 0x5555);

nBC2 = (nBC2 & 0x3333) + (nBC2>>2 & 0x3333);

nBC2 = (nBC2 & 0x0077) + (nBC2>>4 & 0x0077);

nBC2 = (nBC2 & 0x000F) + (nBC2>>8 & 0x000F);

}

assert(nBC1(nX) != nBC2(nX));

Experimental Results. Table 1 shows results of experimental comparison of the
four underlying solvers applied on some instances of the four described prob-
lems. We solved other instances of these problems and relative performance of
the solvers is rather consistent across instance sizes for one problem. We also
used different bit-widths for one problem instance and longer bit-widths do not
necessarily lead to longer solving times, contrary to what one might expect.

It is interesting to notice that there is no solver superior to others, and that
some sorts of problems seem more suited to some solvers (even if the translation
mechanism is fixed). This confirms that a system such as URBiVA should take
advantage of having several different solvers supported.

Problem Fermat’s triples Gray codes Magic square Bit Count
n = 3, bw=6 dim=12, bw=4 n = 4, bw=6 bw=32

number of solutions 10240 1168 880 0

Boolector 3.22 9.37 197.28 1.20

MathSAT 98.43 9.72 309.09 >600.00

Yices 144.64 2.66 76.15 560.67

bit-blasting 27.18 12.23 461.81 7.26

Table 1. Results of experimental comparison between four underlying solvers (”bw”
denotes bit-width used; all times are given in seconds; best times are given in bold face,
worst times are given in italic). All experiments were performed on a PC computer,
with Intel Pentium Dual-Core 2.00GHz processor and 2GB RAM.

6 Conclusions, Related Tools, and Further Work

We have described a system that can be used for efficient modelling (specifying
and solving) of a wide class of problems by reducing them to bva and using the
power of state-of-the art bva solvers. The system can also serve as a testing and
evaluation platform for bva solvers. The approach is most suitable for problems
for which it is easy to check whether some values satisfy the problems, but it
is hard to construct such values. Such problems are, for instance, np-problems
and one-way functions. More generally, the approach can be used for calculating
values x, such that f(x) = y, where f is a function expressible in the described
specification language. Still, the approach has two limitations. The first is a
finite-precision representation used, and the second is that not all computable
functions are expressible since conditional statements and array indices in the
specification can involve only expressions that evaluate to ground values.

There is a number of general modelling systems using specific underlying the-
ories and techniques (e.g., CLP(FD) systems, answer set programming (ASP)
systems, ILOG OPL, DLV, etc.). All these systems use purely declarative lan-
guages (e.g, MiniZinc) and, in contrast to URBiVA, do not have features of im-
perative programming languages (e.g., destructive assignments). These features,
however, make URBiVA directly applicable to wider class of problems (e.g.,
verification problems). URBiVA is also related to tools for software verification
based on symbolic execution (e.g., Java Pathfinder, Pex, SAGE, SmartFuzz,
FORTE). Some of these tools use smt solvers, but they are focused on finding
(single) models that lead to bugs (rather than on enumerating all solutions of
a given problem). Also, they typically handle only machine data-types (and not
arbitrary bit-widths).

URBiVA reduces problems to bit-vector arithmetic. However, the same me-
thodology can be applied, in some cases, for reducing to other smt problems. We
are currently developing a wider system ursa major, that will use various smt
solvers for various theories, yielding a powerful general problem solving tool. We
are planning to consider a wide range of combinatorial and verification problems
from various domains and to explore the practical applicability of the approach.

References

1. R. Brinkmann and R. Drechsler. Rtl-datapath verification using integer linear pro-
gramming. In Proceedings of the VLSI Design 2002, IEEE Computer Society, 2002.

2. R. Brummayer and A. Biere. Boolector: An efficient smt solver for bit-vectors and
arrays. In TACAS, LNCS 5505, Springer, 2009.

3. R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, R. Sebastiani. The MathSAT
4 SMT Solver. In CAV. LNCS 5123, Springer, 2008.

4. R. E. Bryant, D. Kroening, J. Ouaknine, S. A. Seshia, O. Strichman, and
B. A. Brady. An abstraction-based decision procedure for bit-vector arithmetic.
STTT, 11(2), 2009.

5. Predrag Janičić. Uniform Reduction to SAT. manuscript submitted, 2010.
6. Filip Marić. Formalization and Implementation of Modern SAT Solvers. Journal of

Automated Reasoning, 43(1), 2009.

