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Abstract. In this paper a brief account of the
area of automated reasoning (or, rather, of some
of its subareas) is given. Some historical remarks
are given along with overview of some of the most
significant results and current challenges. The pa-
per has a somewhat personal perspective, reflecting
research interests of the author.
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1 Introduction

The main goals of automated reasoning are under-
standing different aspects of reasoning and devel-
opment of algorithms and computer programs that
solve problems requiring reasoning. Automated
reasoning typically combines results and techniques
of mathematical logic, theoretical computer sci-
ence, algorithmics and artificial intelligence. Some
subareas of automated reasoning are automated
theorem proving, interactive (or formal) theorem
proving, automated proof checking, etc. Auto-
mated reasoning has applications in software and
hardware verification, circuit design, logic program-
ming, program synthesis, deductive databases, on-
tology reasoning, mathematical software, educa-
tional software, robotics, planning, etc.

The modern history of automated reasoning is
several decades old, but its roots go centuries, or
even millennia, back. For instance, Aristotle and
ancient Greek philosophers tried to define forms of
reasoning by syllogisms, aiming at formal deductive
reasoning, while Leibniz worked on reducing human
reasoning to calculations within symbolic logic that
could resolve differences of opinions. This Leibniz’s

dream motivated much of the modern mathemat-
ical logic, but also much of automated reasoning.
The modern history of automated reasoning starts
in early 1950’s, along with first programmable com-
puters, and with motivations and key challenges
explained by Martin Davis [14]:

...deductive reasoning, especially as em-
bodied in mathematics, presented an ideal
target for those interested in experiment-
ing with computer programs that pur-
ported to implement the “higher” human
faculties. This was because mathematical
reasoning combines objectivity with cre-
ativity in a way difficult to find in other
domains. For this endeavor, two paths
presented themselves. One was to try
to understand what people do when they
create proofs and to write programs em-
ulating that process. The other was to
make use of the systematic work of the
logicians in reducing logical reasoning to
standard canonical forms on which algo-
rithms could be based. The difficulty with
the first approach was that available in-
formation about how creative mathemati-
cians go about their business was and
remains vague anecdotal. On the other
hand, the well-known unsolvability results
of Church and Turing showed that the
kind of algorithm on which a program-
mer might want to base a theorem-proving
program simply did not exist. Moreover,
it was all too obvious that an attempt to
generate a proof of something non-trivial
by beginning with the axioms of some log-
ical system and systematically applying



the rules of inference in all possible direc-
tions was sure to lead to a gigantic com-
binatorial explosion.

The attractiveness of automated reasoning was
also explained in a memorable quote by Larry Wos
[44]:

The beauty of a theorem from mathemat-
ics, the preciseness of an inference rule
in logic, the intrigue of a puzzle, and the
challenge of a game — all are present in
the field of automated reasoning.

The key modern international forum for auto-
mated reasoning is Association for Automated Rea-
soning (AAR).! The major conferences are Confer-
ence on Automated Deduction (CADE),? and Inter-
national Joint Conference on Automated Reasoning
(IJCAR),? and the major journal is Journal of Au-
tomated Reasoning (JAR).* Outstanding contribu-
tions in the field are honored by Herbrand Award
for Distinguished Contributions to Automated Rea-
soning. Several Turing Awards® went to researchers
working in the area of automated reasoning or ap-
plications of automated reasoning (such as ver-
ification): John McCarthy (1971), Allen Newell
and Herbert Simon® (1975), Antony Hoare (1980),
Robin Milner (1991), Amir Pnueli (1996), Edmund
Clarke, Allen Emerson and Joseph Sifakis (2007).

In the rest of this paper, we give a brief account
of some areas of automated reasoning. The ac-
count is by no means complete, and many results
and subareas of automated reasoning (e.g., equa-
tional reasoning, term rewriting, inductive reason-
ing, model checking, proof checking, reasoning in
modal, temporal, many-valued, intuitionistic log-
ics, etc) are not discussed. Nevertheless, the given
account could hopefully give a hint of richness of
this research field. More detailed accounts of auto-
mated reasoning and its applications, and of history
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5The Turing Award, recognized as an equivalent of No-
bel prize, is an annual award given by the Association for
Computing Machinery (ACM) to “an individual selected for
contributions of a technical nature made to the computing
community community. The contributions should be of last-
ing and major technical importance to the computer field.”

6In 1978. Herbert Simon also received a Nobel prize in
economics.
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of automated reasoning can be found in literature
[39, 8, 37, 21].

2 Automated Reasoning in

Propositional Logic

The propositional logic is the simplest part of math-
ematical logic, dealing with propositional variables,
propositional constants (L, T) and connectives (-,
A, V, =, &). Propositional logic has been studied
(in some form) even in the ancient Greece, while
the major developments came with the work of Au-
gustus DeMorgan and George Boole in the mid-
19th century. The first computer program — Logic
Theorist — able to prove theorem of propositional
logic was created in 1956. by Allen Newell, Her-
bert Simon and Clifford Shaw [35]. The program
was one of the very first programs to perform a
task for which humans are credited with intelli-
gence. It manipulated not numbers but informa-
tion represented in symbolic form and the search
performed by the program was guided by heuris-
tics. The authors applied the system to Section A
of Part I of Whitehead and Russell’s monumental
Principia Mathematica [42] and used the same five
axioms as Whitehead and Russell did. The system
proved 38 of 52 theorems and for some of them
found more elegant proofs (e.g., for the theorem
(pvVq) = (pVvr) = (pV(g=r)). It is inter-
esting that, at the time, one major journal refused
to accept a paper describing Logic Theorist and its
proofs, allegedly because it “would not publish the
description of a proof coauthored by a computer
program”.”

Several years after Logic Theorist (that used to
prove propositional theorems deductively, by using
axioms and inference rules), Martin Davis and Hi-
lary Putnam [16] developed a first semantic-based
procedure — a decision procedure for checking if
the given propositional formula in conjunctive nor-
mal form (CNF) was satisfiable® (this problem is
now called the SAT problem; it is obvious that SAT
is decidable). This procedure was later improved by

7 According to some sources, the paper was rejected since
a new proof of an elementary mathematical theorem was
not notable, apparently overlooking the fact that one of the
authors was a computer program.

8This procedure was developed in a wider attempt at
constructing a proving method for first-order logic.



Martin Davis, George Longmann and Donald Love-
land [15] and is usually referred to as the DPLL
procedure. The procedure, essentially, uses several
simple observations to cut the search space and to
avoid considering all possible valuations of the in-
volved variables (for a formula involving n proposi-
tional variables, there are 2" valuations to be con-
sidered).

Only years after these systems, the notion of NP-
complete problems was developed and it was proved
by Stephen Cook that SAT is NP-complete prob-
lem [13]. Consequently, many hard problems can
be solved by reduction to SAT. This motivated fur-
ther developments in SAT solving and, over the last
years, SAT solving was dramatically improved both
on the high, algorithmic level and on the imple-
mentation level. The DPLL procedure is still in
a core of modern solvers for propositional logic,
but modern, conflict-driven clause-learning SAT
solvers use additional techniques, such as advanced
non-chronological search (backjumping) and lemma
learning techniques tightly integrated with addi-
tional features into coherent systems [5]. Modern
SAT solvers typically have a number of parame-
ters that control the used heuristics and that can
be tuned to certain classes of input instances (e.g.,
instances coming from software verification, from
computer aided design, from combinatorial prob-
lems, etc). Solvers also often differ in some mi-
nor aspects, sufficient to lead in significant differ-
ences in performance for certain inputs. This led
to appearance of SAT portfolio solvers that use a
number of SAT solvers (or a SAT solver with a
number of combinations of parameters) and smart,
machine-learning techniques for choosing among
them [46, 36]. There is a very active and large SAT
solving community with several dedicated confer-
ences,” journals,'? and competitions''. Some of the
most successful SAT solvers are BerkMin, grasp,
MiniSAT, picoSAT, SATzilla, zChaff. Today, state-
of-the-art SAT solvers can solve instances (com-
ing from industrial applications) with millions of
clauses and thousands of variables. Thanks to
these advances, there are a number of practical
hard problems that are solved by reduction to SAT.
Because of this, a modern SAT solver is often
considered a “Swiss army knife” for a wide do-

9http://www.lri.fr/SAT2011/
Ohttp://jsat.ewi.tudelft.nl/
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main of tasks. Still, reducing different problems
to SAT is non-trivial. There are several systems
that help in this respect. For example, the sys-
tem URSA Major system uses a specific high-level
imperative-declarative language and the specifica-
tions are transformed into SAT instances (or to
SMT instances), solved by a SAT solver (or by a
SMT solver), and the solution is passed back in
terms of original variables [34]. The system is suit-
able for solving a wide class of constraint satisfac-
tion problems. For instance, the system can be
used for finding a seed value that leads to a spe-
cific pseudorandom number in certain iteration —
a problem very hard to solve in other programming
languages.

Some of the current challenges in SAT solving
are checking unsatisfiability proofs of huge input in-
stances, development of verified real-world solvers,
development of non-DPLL-based solvers, develop-
ment of non-CNF solvers, etc.

3 Automated Reasoning in

First-Order Logic

First-order logic (FOL) is more expressive than
propositional logic — it allows use of predicate and
function symbols and quantification over variables.
This expressiveness leads to undecidability — there
is no a procedure that can decide whether an ar-
bitrary first-order formula is valid. However, FOL
is semi-decidable — there are procedures that can
confirm (in a finite number of steps) if an arbitrary
first-order formula is valid (if the formula is invalid,
then these procedures only in some cases can de-
tect that the formula is invalid, and otherwise they
loop). The first such semi-decision procedures were
derived by Skolem and Herbrand in 1920s and early
1930s, much before the first computers. Herbrand’s
procedure was based on unguided search and enu-
meration of ground terms over, what we nowadays
call, Herbrand’s universe. This approach is useless
for practical applications (i.e., proving non-trivial
theorems), but it served as an important step to-
wards practical theorem provers for FOL. One of
the first, developed by Paul Gilmore, was based on
a refined version of the enumeration [20]. Prov-
ing based on this idea used the following structure:
theorems are proved by refutation (i.e., the nega-



tion of the theorem is to be checked for inconsis-
tency), the formula being checked for inconsistency
is transformed into prenex normal form, existen-
tial quantifiers are eliminated in favor of Skolem
constants, the quantifier-free part of the formula
is transformed into conjunctive normal form, lead-
ing to the set of first-order clauses to be checked
for inconsistency. For this final (but the hardest)
part, the real leap came with Alan Robinson’s res-
olution method [38]. This extremely elegant proof
system with only one inference rule raised high ex-
pectations among researchers, already stating that
automated proving of mathematical theorems too
hard for humans is imminent. However, despite
many improvements and extensions to the resolu-
tion method over time, the first non-trivial conjec-
ture not earlier proved by a human was proved by
a computer only in 1997. It was the conjecture
that all Robbins algebras are Boolean algebras. It
was an open conjecture for more than fifty years
and was first proved by EQP (a variant of Otter, a
resolution-based theorem prover developed at Ar-
gonne National Laboratory). The prover worked
over eight days before proving the conjecture. This
long-awaited success was one of the central news in
media worldwide. After 1997, several other open
mathematical conjectures have been proved by au-
tomated provers or with their help, especially in
finding complicated syntactic proofs with tedious
technical steps (e.g., in the domain of quasi-groups
and algebraic logic).

The research in first-order theorem proving based
on the resolution method and its refinements is
still a very active research field. The resolution
method’s legacy includes logic programming and
the language Prolog and its variants. Modern reso-
lution based provers can decide problem instances
with thousands of variables and clauses. There is a
large database of problem instances TPTP for first-
order theorem proving [41], used for evaluation of
provers and for competitions.'? Some of the most
successful theorem provers for first-order logic are
E, Otter/Prover9, Spass, Vampire.

Apart from resolution, a number of other meth-
ods (such a the tableaux method) have been also
extensively used in automated theorem proving.
However, there is a general concern: despite the
fact that these uniform proof procedures give ele-

2http://www.cs.miami.edu/~tptp/CASC/

gant semi-decision procedures for FOL, they are of-
ten helpless with conjectures in specific first-order
theories, important for applications, such as linear
arithmetic. Moreover, some of such specific first-
order theories are decidable so they admit proper
decision procedures. Specific procedures for specific
first-order theories can be much more efficient than
general procedures such as the resolution method.
The first automated theorem prover specialized for
one first-order theory — linear arithmetic — was
developed by Martin Davis in 1954, following the
decision procedure due to Presburger. According
to Davis, “its great triumph was to prove that
the sum of two even numbers is even” [14]. Over
the next decades, especially after 2000., a lot of
efforts have been invested in developing efficient
specialized decision procedures. This field is now
called “satisfiability modulo theories” (SMT). SMT
solvers are based on SAT solvers in combination
with solvers able to check consistency of a set of lit-
erals in the underlying theory. Theories most often
used are: linear arithmetic, theory of uninterpreted
functions, theory of arrays, bit-vector arithmetic,
etc. There are schemes for combining decision pro-
cedures into a decision procedure for the combined
theory, if certain conditions are met [23]. Modern
SMT solvers are successfully used in solving a wide
range of problems, primarily in software and hard-
ware verification, planning, scheduling, etc. They
can decide instances from industrial applications
that take gigabytes to get stored. There is a work-
shop dedicated to SMT solving'® and an annual
competitions for SMT solvers.'* Some of the most
successful ones are Boolector, MathSAT, Yices, Z3.

One of the most important field of application of
automated reasoning in first order logic (but also
in other logics, such as temporal logics) and es-
pecially of SMT solvers are in software and hard-
ware verification. An estimated annual cost of the
bugs in software and hardware to the US econ-
omy alone is between 20 and 60 billion dollars.
Although automated reasoning was used in veri-
fication tasks for decades, real successes and real-
world applications came only in 1990s. Major soft-
ware and hardware companies like Intel, Microsoft,
NEC, AMD, IBM have been using and develop-
ing tools for formal verification since mid-1990’s

I3http://uclid.eecs.berkeley.edu/smt11/
Mhttp://www.smtcomp. org



[18, 17, 3]. In the meanwhile, many complex soft-
ware components were successfully verified and ver-
ification tools are used in developing safety-critical
applications in many companies. However, one of
the most important goals for automated reasoning
remains development of robust and reliable verifi-
cation tools that will be regularly used in everyday
practice. Some of these goals are formulated within
a Verification Grand Challenge programme, advo-
cated since 2005. by Tony Hoare’s and envisioning a
world where programs would only be produced with
machine-verified guarantees of adherence to speci-
fied behavior. The programme was inspired and
comparable to the human genome project (1990-
2004). It has a 15 year perspective and would re-
quire over a thousand person-years of skilled scien-
tific effort from all over the world.

4 Automated Reasoning in
Higher-Order Logic and In-
teractive Theorem Proving

Higher-order logic is more expressible than first or-
der logic as it admits several types of quantification.
For instance, it is not only quantification over indi-
vidual variables that is allowed, but also quantifi-
cation over predicate and function symbols. Such
expressive framework is suitable for some tasks but
efficient automated theorem prover for it is typi-
cally a big challenge.

In automated reasoning, higher-order logic is
used also as a setting for interactive theorem prov-
ing. Interactive theorem proving systems (or proof
assistants) are used to check (and guide) proofs
constructed by the user, by verifying each proof
step with respect to the given underlying logic.
Proofs constructed within proof assistants are ver-
batim and detailed, and typically much longer than
“traditional proofs”.!> On the other hand, “tra-
ditional proofs” most often are not proofs at all,
because of the many missing fragments, informal
arguments, etc. Using interactive theorem proving
uncovered many flaws in many published mathe-
matical proofs (including some seminal ones), pub-
lished in books and journals. Some of the most

15The ratio of formal proof length to informal proof length
is often called the de Bruijn factor and it varies for different
systems. It is often around 4 [4].

popular modern proof assistants are Isabelle, Coq,
HOL Light, PVS, Mizar, ACL2, etc [43]. The lead-
ing conference in the field is ITP.16

When checking proofs, correctness of proof as-
sistants themselves is also critical. The theorem
provers based on the LCF tradition (such as Is-
abelle and HOL Light) have a very small kernel
that checks all other derivations (this is called the
“de Bruijn criterion”). This small core can be just
tens of lines of code and can be manually verified.

Interactive theorem proving gets more and more
popular and its expected role in the future is illus-
trated by the following Wiedijk’s comments:

In mathematics there have been three
main revolutions:

1. The introduction of proof by the
Greeks in the fourth century BC, cul-
minating in Euclid’s Elements.

2. The introduction of rigor in math-
ematics in the nineteenth century.
During this time the non-rigorous
calculus was made rigorous by
Cauchy and others. This time also
saw the development of mathemati-
cal logic by Frege and the develop-
ment of set theory by Cantor.

3. The introduction of formal mathe-
matics in the late twentieth and early
twenty-first centuries.'”

Most mathematicians are not aware that
this third revolution already has hap-
pened, and many probably will disagree
that this revolution even is needed.

The computer will likely change the game
in mathematics as it has done in other
scientific fields. Once rigorous com-
puter aided and verified proofs are nearly
as easy (or easier) than hand generated
publishable proofs, they will rapidly be-
come the norm. Work will expand on cre-
ating new tools to simplify and automate
the process. Mathematicians will be able

6http://itp2011.cs.ru.nl/ITP2011

1"Here Wiedijk presumably thinks of “computer sup-
ported formal mathematics”. Namely, formal mathematics
and formalist theory appeared one century earlier — in the
late nineteen and early twentieth centuries.



to work with far more complexity than is
practical today. Those who are best able
to leverage this capability and to integrate
human intuition into this framework will
be the most successful.

In 1993, an idea for a large-scale international
project QED (Q.E.D. stands for “quod erat demon-
strandum” in Latin, i.e., “that which was to be
demonstrated”) aimed at formalization of mathe-
matical knowledge was presented by Robert Boyer
and other researchers. The goals of the project were
outlined in 1994, in the QED manifesto [2], calling
for a computer-based database of all important, es-
tablished mathematical knowledge, strictly formal-
ized and with all proofs having been checked auto-
matically. The project would be a major scientific
undertaking requiring the cooperation and effort of
hundreds of mathematics and computer scientists,
research groups, research agencies, universities, and
corporations. This system will have benefits for
mathematics, science, technology, and education.
Although a formal project has never been started,
many researchers and QED-style projects follow the
goals presented in the manifesto and many of them
have been achieved in the meanwhile. There are
several theorems proved for the first time thanks to
proof assistants (e.g., Higman’s lemma and anal-
ysis of Gerard’s paradox [1]). From the (infor-
mally and somewhat arbitrarily compiled) list of
“top 100 mathematical theorems”, 86 have been
formalized so far.'® These proofs include proofs of
complex classical theorems like prime number the-
orem (formalized within HOL Light and within Is-
abelle), Godel’s Incompleteness Theorem (formal-
ized within Coq, Isabelle, Nqthm), Sylow’s The-
orem (within Coq, Mizar, Isabelle), etc. Among
these proofs is also a proof of the “four color the-
orem” (given any separation of a plane into con-
tiguous regions, no more than four colors are re-
quired to color the regions of the map so that no
two adjacent regions have the same color). The
theorem was proved in 1976. by Kenneth Appel
and Wolfgang Haken as the first major theorem
to be proved using a computer (but without a for-
mal proof verified by some proof assistant). Their
proof was largely combinatorial and considered a
particular set of 1936 maps. Initially, their proof
was not accepted by all mathematicians because

Bhttp://www.cs.ru.nl/~freek/100/

the computer-assisted proof was infeasible for a hu-
man to check by hand. In 2005, the theorem was
proved (within Coq) by Georges Gonthier, dismiss-
ing all concerns about the validity of the proof.

Another interesting example of applications of
interactive theorem proving concerns the proof of
the Kepler Conjecture. The Kepler conjecture says
that no packing of congruent balls in Euclidean
three space has density greater than that of the
face-centered cubic packing — 7/v/18 ~ 0.74048.
This is the oldest problem in discrete geometry and
is an important part of Hilbert’s 18th problem. It
remained unsolved for nearly 400 years until it was
finally solved in 1998. by Thomas Hales. Hales’
proof, one of the most complicated mathematical
proofs ever produced, was based on checking of
many individual cases using complex computer cal-
culations. The journal Annals of Mathematics so-
licited the paper for publication in 1998. and hosted
a conference in 1999. that was devoted to under-
standing the proof. A panel of 12 referees was as-
signed to the task of verifying the correctness of the
proof and after four full years, it returned a report
stating that they were 99% certain of the correct-
ness of the proof, but they unable to completely cer-
tify the proof (still, the journal published the proof
in 2005). In order to dismiss concerns about his
proof, Hales in 2003 initiated the Flyspeck project
to fully formalize (within HOL Light) his proof and
all computer programs used in constructing it. It
is involves a number of researchers and is expected
to take 66 man-years.'?

Formalization of mathematical knowledge is im-
portant for dealing with both classical and mod-
ern mathematical proofs (especially if they in-
volve complex combinatorial arguments provided
by computer) and for education — for deeper un-
derstanding of mathematics. It is also very impor-
tant in software and hardware verification for ver-
ifying safety-critical computer programs. Some of
the applications of interactive theorem proving in
verification are: correctness of the floating point di-
vide operations for AMD’s Pentium-like AMD5K86
microprocessor was proved (within ACL2); a micro-
processor for aircraft flight control has been veri-
fied (within PVS); correctness of the FM9001 mi-
croprocessor was proved (within Nqthm); correct-

http://code.google.com/p/flyspeck/wiki/
FlyspeckFactSheet



ness of a modern SAT solvers was proved (within
Isabelle)[31, 32, 33].

The role of interactive theorem proving is not
limited to mathematics and computer science. Ac-
tually, many other reasoning tasks can be formal-
ized (in mathematical terms) and treated within
proof assistants. One such example is analysis of
chess problems: for instance, retrograde chess anal-
ysis [30] or analysis of correctness of strategies for
chess endgames [29)].

Despite all results and successes of interactive
theorem proving, there are still very few mathe-
maticians using it. Therefore, one of the main chal-
lenges is to further develop theorem provers so they
are easier to use and more simply resemble tradi-
tional mathematics [9]. There are steps in these
directions, necessary to make interactive theorem
proving more easily accessible to mathematicians.

5 Automated Reasoning in

Geometry

Automated proving of geometry theorems and solv-
ing geometry problems were challenging and inspir-
ing tasks from the very first years of modern com-
puter science. Namely, for millennia these sorts of
tasks have been considered typical tasks requiring
high intellectual skills. There is a (algebraic-based)
decision procedure (due to Tarski) for a variant of
Euclidean geometry but it is practically useless for
non-trivial theorems. One of the very first auto-
mated theorem provers was a theorem prover for
geometry — Geometry Machine — developed by
Herbert Gelertner [19]. This system did not aim
at completeness for its domain, but still was able
to prove tens of geometry theorems. The system
produced traditional, readable Euclidean proofs. It
also introduced two innovations (later used in other
domains as well): use of symmetries to shorten the
proofs and semantic information (obtained from
“diagrams”) to guide the search.

Significant breakthrough in geometry reasoning
came in 1977, when Wen-Tstin Wu introduced an
algebraic method (now called Wu’s method) capa-
ble of proving many complex theorems in Euclidean
geometry [45], including many problems from Inter-
national Mathematical Olympiads [10]. With this
method, proving of geometry theorems is reduced

to solving multivariate polynomial equations. The
solving method is based on characteristic sets (in-
troduced by Ritt) and is a decision procedure for
certain classes of problems. This theorem prover is
sometimes considered the most successful theorem
prover overall (not only in the field of geometry).
Chinese experts selected this method as one of “the
four new great Chinese inventions”.2°

In 1965, Bruno Buchberger created the theory of
Grobner bases (named in honor of his PhD advi-
sor, Wolfgang Grobner), one of the major theories
in computer algebra [6]. A Grobner basis is a par-
ticular kind of generating subset of an ideal in a
multivariate polynomial ring. Buchberger also de-
signed an algorithm (now known as Buchberger’s
algorithm) to find a Grobner basis of a given set of
polynomials,; i.e., an algorithm for transforming a
given set of generators for a polynomial ideal into
a Grobner basis with respect to some monomial or-
der. Grobner bases can be used for solving simulta-
neous polynomial equations, for deciding equality
of ideals, for deciding membership of ideals, etc.
The methodology has many applications in cod-
ing theory, cryptography, integer programming and
many other areas of mathematics and computer sci-
ence [7], including automated theorem proving in
geometry (the same class of theorems dealt with
by Wu’s method) [28]. Namely, hypotheses of a ge-
ometry statements can be represented, in algebraic,
Cartesian terms, as multivariate polynomials gen-
erating an ideal. The conjecture of the statement
is valid if the corresponding polynomial belongs to
the ideal, hence the problem can be solved by Buch-
berger’s algorithm.

Algebraic methods (like Wu’s and Buchberger’s
one) are very efficient and can prove hundreds of
complex geometry theorems. However, the draw-
back is that they do not provide human-readable,
traditional proofs, but only yes or no answer, ac-
companied by an algebraic argument. During
1990’s there were several (coordinate-free, non-
algebraic) methods developed that were able to pro-
duce more or less readable proofs. Some of them
are the area method [12, 27|, and the full angle
method [12]. Their main disadvantage compared

20The remaining three “modern great inventions” are hy-
brid rice, synthesized crystalline bovine insulin, and land
facies oil-forming theory. The four ancient “great Chinese
inventions” are papermaking, printing, gunpowder and com-
pass (http://www.edu.cn/20060215/3173112. shtml).



to the algebraic methods is lower efficiency. There
are approaches, combining reasoning in coherent
logic with SAT solving, aiming at producing tra-
ditional, readable and formal proofs efficiently for
some classes of geometry theorems [26, 40]. De-
veloping automated theorem provers that produce
readable proofs efficiently as algebraic provers still
remains one of the greatest challenges in the field.

The leading conference in the field is ADG.?!
Some of the modern theorem provers for geome-
try are GEX/JGEX, Geometry Explorer, and Geo-
Proof.

Geometry theorem provers have been applied in
various scientific and industrial fields, like biology,
computer vision, computer-aided design, and robot
kinematics [11]. In recent years, geometry provers
are integrated into several dynamic geometry sys-
tems — computer programs that allow creating,
visualizing and manipulating geometric construc-
tions, primarily in plane geometry. One of the dy-
namic geometry systems with integrated theorem
proving is a system GCLC [22], based on a cus-
tom geometry construction language [25]. There
are three geometry theorem provers (based on the
Grobner bases method, on Wu’s method, and on
the area method) built in GcLc, all capable of effi-
ciently proving hundreds of complex geometry the-
orems [24].

6 Conclusions

Automated reasoning has made a lot of striking
successes over the last fifty years. It evolved into a
rich scientific discipline, with many subdisciplines
and with solid grounds in mathematics and com-
puter science. Over the years, automated reasoning
transformed from a research field based on math-
ematical logic into a field that is a driving force
for mathematical logic. Nowadays, automated rea-
soning tools are used in everyday practice in math-
ematics, computer science and engineering. Also,
its role in education (both as a supporting tool and
a subject matter) increases and should increase fur-
ther.

In this essay we gave just a very short account of
the development of automated reasoning and men-
tioned only a fraction of successes of this fascinating
field. More successes of automated reasoning are

2lhttps://1siit.u-strasbg.fr/adg2010

still to come, and in this essay some of the chal-
lenges and goals were also briefly discussed.
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