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Abstract The area method for Euclidean constructive geometry was proposed by Chou,
Gao and Zhang in the early 1990’s. The method can efficiently prove many non-trivial ge-
ometry theorems and is one of the most interesting and most successful methods for auto-
mated theorem proving in geometry. The method produces proofs that are often very concise
and human-readable.

In this paper, we provide a first complete presentation of themethod. We provide both
algorithmic and implementation details that were omitted in the original presentations. We
also give a variant of Chou, Gao and Zhang’s axiom system. Based on this axiom system,
we proved formally all the lemmas needed by the method and itssoundness using theCoq
proof assistant.

To our knowledge, apart from the original implementation bythe authors who first pro-
posed the method, there are only three implementations more. Although the basic idea of the
method is simple, implementing it is a very challenging taskbecause of a number of details
that has to be dealt with. With the description of the method given in this paper, implement-
ing the method should be still complex, but a straightforward task. In the paper we describe
all these implementations and also some of their applications.
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1 Introduction

There are two major families of methods in automated reasoning in geometry: algebraic
style and synthetic style methods.

Algebraic style has its roots in the work of Descartes and in the translation of geo-
metric problems to algebraic problems. The automation of the proving process along this
line began with the quantifier elimination method of Tarski [59] and since then had many
improvements [15]. The characteristic set method, also known as Wu’s method [4,63], the
elimination method [62], the Gröbner basis method [35,36], and the Clifford algebra ap-
proach [39] are examples of practical methods based on the algebraic approach. All these
methods have in common an algebraic style, unrelated to traditional, synthetic geometry
methods, and they do not provide human-readable proofs. Namely, they deal with polyno-
mials that are often extremely complex for a human to understand, and also with no direct
link to the geometrical contents.

The second approach to the automated theorem proving in geometry focuses on syn-
thetic proofs, with an attempt to automate the traditional proving methods. Many of these
methods add auxiliary elements to the geometric configuration considered, so that a certain
postulates could apply. This usually leads to a combinatorial explosion of the search space.
The challenge is to control the combinatorial explosion andto develop suitable heuristics
in order to avoid unnecessary construction steps. Examplesof synthetic proof methods in-
clude approaches by Gelertner [20], Nevis [48], Elcock [18], Greeno et al. [23], Coelho and
Pereira [14], Chou, Gao, and Zhang [8].

In this paper we focus on the area method, an efficient coordinates-free method for
a fragment of Euclidean geometry, developed by Chou, Gao, and Zhang [8,9,11] that is
somewhere between the two above styles. This method enablesone to implement provers
capable of proving many complex geometry theorems. The method is sometimes credited
(e.g., by its authors) to produce traditional, human-readable proofs. The generated proofs are
indeed often concise, consisting of steps that are directlyrelated to the geometrical contents
involved and hence can be readable and easily understood by amathematician. However,
since the proofs are formulated in terms of arithmetic expressions, they can also significantly
differ from traditional, Hilbert-style, synthetic proofsgiven in textbooks. Also, proofs may
involve huge expressions, hardly readable, despite the fact their atomic expressions have
clear and intuitive geometrical meaning.

The main idea of the area method is to express the hypotheses of a theorem using a
set of starting (“free”) points and a set of constructive statements each of them introducing
a new point, and to express the conclusion by an equality between polynomials in some
geometric quantities (without considering Cartesian coordinates). The proof is developed
by eliminating, in reverse order, the points introduced before, using for that purpose a set
of appropriate lemmas. After eliminating all the introduced points, the goal equality of the
conjecture collapses to an equality between two rational expressions involving only free
points. This equation can be further simplified to involve only independent variables. If the
expressions on the two sides are equal, the conjecture is a theorem, otherwise it is not. All
proof steps generated by the area method are expressed in terms of applications of high-level
geometry lemmas and expression simplifications.

Although the basic idea of the method is simple, implementing it is a very challenging
task because of a number of details that has to be dealt with. To our knowledge, apart from
the original implementation by the authors who first proposed the area method, there are
only three other implementations. These three implementations were made independently
and in different contexts:
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– within a tool for storing and exploring mathematical knowledge (Theorema [2]) — im-
plemented by Judit Robu [58].

– within a generic proof assistant (Coq [61]) — implemented byJulien Narboux [43];
– within a dynamic geometry tool (GCLC [29]) — implemented by Predrag Janǐcić and

Pedro Quaresma [33];

The implementations of the method can efficiently find proofsof a range of non-trivial
theorems, including theorems due to Ceva, Menelaus, Gauss,Pappus, and Thales.

In this paper, we present an in-depth description of the areamethod covering all relevant
definitions and lemmas. We also provide some of the implementation details, which are not
given or not clearly stated in the original presentations. We follow the original exposition,
but in a reorganised, more methodological form. This description of the area method should
be sufficient for a complete understanding of the method, andfor making a new imple-
mentation a straightforward task. This paper also summarises our results, experiences, and
descriptions of our software systems related to the area method [30,33,43,45,52,54].

In this paper we consider only the basic variant of the area method for Euclidean geom-
etry, although there are other variants. Additional techniques can also be used to produce
shorter proofs and slightly extend the basic domain of the method [9]. However, these tech-
niques are applicable only in special cases and not in a uniform way, in contrast to the basic
method. It is also possible to extend the area method to deal with goals in the form of in-
equalities (of the formL < R or L ≤ R). In that case, the inequality can be decided using an
CAD algorithm or a heuristic like the sum of squares method. There are also variants of the
area method developed for solid Euclidean geometry [10] andfor hyperbolic plane geom-
etry [64]. Substantially, the main idea of these variants isthe same as in the basic method
and this demonstrates that the approach has a wide domain. Variants of the method can be
implemented in the same way described in this paper.

Overview of the paper.The paper is organised as follows: first, in Section 2, we explain
the area method in details. In Section 3, we describe all the existing implementations of the
method and some of their applications. In Section 4 we summarise our contributions and we
draw final conclusions in Section 5.

2 The Area Method

The area method is a decision procedure for a fragment of Euclidean plane geometry. The
method deals with problems stated in terms of sequences of specific geometric construction
steps. We begin introducing the method by way of example.

In the rest of the paper, capital letters will denote points in the plane and△ABC will
denote the triangle with verticesA, B, andC.

2.1 Introductory Example

The following simple example briefly illustrates some key features of the area method.

Example 2.1 (Ceva’s Theorem)Let △ABC be a triangle and P be an arbitrary point in
the plane. Let D be the intersection of AP and BC, E be the intersection of BP and AC, and
F the intersection of CP and AB. Then:

AF

FB

BD

DC

CE

EA
= 1
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This result can be stated and proved, within the area method setting.

The Construction.The pointsA, B, C, andP arefree points, points not defined by construc-
tion steps. The pointD is the intersection of the line determined by the pointsA andP and
of the line determined by the pointsB andC. The pointsE andF are constructed in a similar
fashion.

For this problem, an initialnon-degeneracy conditionis that it holdsF 6= B, D 6=C, and
E 6= A. Notice also that the pointP is not completely arbitrary point in the plane, since it
should not belong to the three lines parallel to the sides of the triangle and passing through
the opposite vertices (Figure 2.1).

b

C

b

B

A
b

P

b

D

b

E
b

F

b

Fig. 2.1 Illustration for Ceva’s theorem

Stating the Conjecture.One of the key problems in automated theorem proving in geometry
is the control of the combinatorial explosion that arises from the number of similar, but still
different, cases that have to be analysed. For instance, given three pointsA, B, andC, how
many triangles do they define? One can argue that the answer isone, but from a syntactic
point of view,△ABC is not equal to△ACB. For reducing such combinatorial explosion,
but also for ensuring rigorous reasoning, one has to deal with arrangement relations, such
ason the same side of a line, two triangles have the same orientation, etc. Note that, in
Euclidean geometry, positive and negative orientation arejust two names used to distinguish
between the two orientations and one can select any trianglein the plane and proclaim
that it has the orientation that will be calledpositive(and it is similar with orientation of
segments on a line). In other words, in Euclidean geometry the notion of orientation is
relative rather then absolute, and one can prove that a triangle has positive orientation, only
if positive (and negative) orientation was already defined via some triangle in the same
plane. In the Cartesian model of Euclidean geometry, the twoorientations are distinguished
asclockwiseandcounterclockwiseorientations. These two names should not be used for
Euclidean geometry, because they cannot be defined there. Unfortunately, these terms are
widely used in geometrical texts, including in the description of the area method [67].
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For stating and proving conjectures, the area method uses a set of specificgeometric
quantitiesthat enable treating arrangement relations. Some of them are:

– ratio of parallel directed segments, denotedAB/CD. If the pointsA, B, C, andD are
collinear,AB/CD is the ratio between lengths of directed segmentsAB andCD. If the
pointsA, B, C, andD are not collinear, and it holdsAB‖CD, there is a parallelogram

ABPQsuch thatP, Q, C, andD are collinear and thenAB
CD

= QP
CD

.
– signed areafor a triangleABC, denotedSABC is the area of the triangleABC, negated if

ABChas the negative orientation.

– Pythagoras difference,1 denotedPABC, for the pointsA, B, C, defined asPABC= AB
2
+

CB
2−AC

2
.

These three geometric quantities allow expressing (in formof equalities) geometry prop-
erties such as collinearity of three points, parallelism oftwo lines, equality of two points,
perpendicularity of two lines, etc. (see section 2.2.1). Inthe example, the conjecture is ex-
pressed using ratios of parallel directed segments.

Proof.The proof of a conjecture is based on eliminating all the constructed points, in reverse
order, using for that purpose the properties of the geometric quantities, until an equality in
only the free points is reached. If the equality is provable,then the original conjecture is a
theorem as well. For the given example, a proof can be as follows:

It can be proved thatAF
FB

= SAPC
SBCP

. By analogyBD
DC

= SBPA
SCAP

andCE
EA

= SCPB
SABP

. Therefore:

AF
FB

BD
DC

CE
EA

= SAPC
SBCP

BD
DC

CE
EA

the pointF is eliminated

= SAPC
SBCP

SBPA
SCAP

CE
EA

the pointD is eliminated

= SAPC
SBCP

SBPA
SCAP

SCPB
SABP

the pointE is eliminated

= 1

Q.E.D.

The example illustrates how to express a problem using the given geometric quantities
and how to prove it, and moreover, how to give a proof that is concise and very easy to
understand.

The complete proof procedure will be given in Section 2.5. Before that, the underlying
axiom system will be introduced.

2.2 Axiomatic Grounds for the Area Method

There is a number of axiom systems for Euclidean geometry. Euclid’s system [26], partly
naive from today’s point of view, was used for centuries. In the early twentieth century,
Hilbert provided a more rigorous axiomatisation [27], one of the landmarks for modern
mathematics, but still not up to modern standards [16,42]. In the mid-twentieth century,
Tarski presented a new axiomatisation for elementary geometry (with a limited support for

1 The Pythagoras differenceis a generalisation of the Pythagoras equality regarding the three sides of a
right triangle, to an expression applicable to any triangle(for a triangleABCwith the right angle atB, it holds
thatPABC= 0).
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property in terms of geometric quantities
pointsA andB are identical PABA= 0
pointsA, B, C are collinear SABC= 0
AB is perpendicular toCD PABA 6= 0∧PCDC 6= 0∧PACD =PBCD
AB is parallel toCD PABA 6= 0∧PCDC 6= 0∧SACD = SBCD

O is the midpoint ofAB SABO= 0∧PABA 6= 0 ∧ AO
AB

= 1
2

ABhas the same length asCD PABA=PCDC

pointsA, B, C, D are harmonic SABC= 0 ∧SABD = 0 ∧PBCB 6= 0 ∧PBDB 6= 0∧ AC
CB

= DA
DB

angleABChas the same measure asDEF PABA 6= 0∧PACA 6= 0∧PBCB 6= 0∧PDED 6= 0∧PDFD 6= 0∧
PEFE 6= 0∧ SABC ·PDEF = SDEF ·PABC

A andB belong to the same circle arcCD SACD 6= 0 ∧SBCD 6= 0∧ SCAD ·PCBD = SCBD ·PCAD

Table 2.1 Expressing geometry predicates in terms of the three geometricquantities.

continuity features), along with a decision procedure for that theory [60]. Although there
are other variations of these systems [31,44], these three are the most influential and most
popular axiomatic systems for geometry.

Modern courses on classical Euclidean geometry are most often based on Hilbert’s ax-
ioms. In Hilbert-style geometry, the primitive (not defined) objects are:point, line, plane.
The primitive (not defined) predicates are those of congruence and order (with addition of
equality and incidence2). Properties of the primitive objects and predicates are introduced
by five groups of axioms, such as: “For two pointsA, B there exists a linea such that bothA
andB are incident with it”.

In the following text we briefly discuss how axiomatic grounds can be built for the
fragment of geometry treated by the area method.

2.2.1 A Hilbert Style Axiomatisation

The geometric quantities used within the area method (mentioned in Section 2.1) can be
defined in Hilbert style geometry, but they also require axioms of the theory of fields. The
notions of the ratio of parallel directed segments and of thesigned area involve the notion
of orientation of segments on a line and the notion of orientation of triangles in a plane
(discussed in section 2.1).

Using geometric quantities, it is possible to express a range of geometry predicates as
shown in Table 2.1.

The given correspondences can be proved as theorems of Hilbert’s geometry. For in-
stance, one direction of the property about angle congruence can be proved as follows.
SinceA, B, andC define an angle, they are different by definition (i.e.,PABA 6= 0,PACA 6= 0,
PBCB 6= 0), and the same holds for the pointsD, E, F . If the angleABC is a right angle, then
PABC = PDEF = 0 and triviallySABC ·PDEF = SDEF ·PABC; otherwise, by the cosine rule,

SABC/PABC = ( 1
2AB·BC· sin(ABC))/(AB

2
+CB

2− (AB
2
+CB

2−2AB·BCcos(ABC))) =
sin(ABC)/(4cos(ABC)) = tan(ABC)/4; hence, if the angleDEF is congruent toABC, then
SABC/PABC= tan(ABC)/4= SDEF/PDEF and, furtherSABC ·PDEF = SDEF ·PABC.

Proofs generated by the area method use a set of specific lemmas (see Section 2.4).
These lemmas can be proved within Hilbert’s geometry (i.e.,within its fragment for plane
geometry), but the full, formal proofs would be very long andwould involve complex no-
tions like orientation and area of a triangle. That is why it is suitable to have an alternative,

2 See von Plato’s discussion about incidence in Hilbert’s geometry [50].
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higher-level axiomatisation, suitable for the area method. Chou, Gao and Zhang [8] pro-
posed such a system for affine geometry, and in the next section we propose a variant of this
system.

2.2.2 A New Axiom System for the Area Method

The axiom system used by Chou, Gao and Zhang [8,9] is a semi-analytic axiom system
with (only) points as primitive objects (lines are not primitive objects as in Hilbert’s axiom
system). The axiom system contains the axioms of field, so thesystem uses the concept of
numbers, but it is still coordinate free. The field is not assumed to be ordered, hence the
axiom system has the property of representing an unordered geometry. This means that, for
instance, one cannot express the concept of a point being between two points (unlike in
Hilbert’s system).

In the following, we present our special-purpose axiom system for Euclidean plane ge-
ometry (within first order logic with equality), a modified version of the axiomatic system
of Chou, Gao and Zhang.

In contrast to Hilbert’s system, in our axiom system there isjust one primitive type of
geometrical objects: points. Variables can also range overa field(F,+, ·,0,1). F is any field
of characteristic different from 2.3 The axioms of the theory of fields are standard and hence
omitted.

There is one primitive binary function symbol (··) and one ternary function symbols
(S...) from points toF . The first depicts the signed distance between two points, the second
represents the signed area of a triangle. All axioms given inTable 2.2 are implicitly univer-
sally quantified. To improve readability (of the last three axioms), the following shorthands
are used:

PABC ≡ AB
2
+BC

2−AC
2

AB‖CD ≡ SACD = SBCD

AB⊥CD ≡ PACD = PBCD

The following shorthands are also used within the method forbetter readability:

SABCD ≡ SABC+SACD

PABCD ≡ PABD−PCBD

Definition 2.1 (Geometry Quantities) Geometry quantitiesare expressions of the formAB
CD

,
SABC, SABCD, PABC, PABCD.

Relationship with the Hilbert style geometry.Note that in the Hilbert style approach, pred-
icates··, S..., andP... and are all defined (see Section 2.2.1), while in this approach, ··, S...

are primitive predicates andP... is a defined predicate. In both cases, ratio of parallel di-
rected segments is defined using the notions of the theory of fields. Provable properties of
Hilbert’s geometry shown in Table 2.1, can be used as definitions (for notions of parallel
lines, perpendicular lines, etc) in the area method theory.Thanks to all these definitions, all
well-formed formulae of the theory of the area method are also well-formed formulae of the
Hilbert style geometry. Moreover, all presented axioms of the area method can be proved in

3 The fact that the characteristic ofF is different from 2 is used to simplify the axiom system. Indeed,
if 0 6= 2 since∀ABC,SABC = −SBAC (by axiom 3) then∀AC,SAAC = −SAAC and hence∀AC,SAAC = 0, so
we can omit the axiomSAAC = 0 which appears in the system proposed by Chou et al. In addition, this
assumption allows, for instance, construction of the midpoint (using the construction axiom withr = 1

2 ) of a
segment without explicitly stating the assumption 06= 2.
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1. AB= 0 if and only if the pointsA andB are identical
2. SABC= SCAB
3. SABC=−SBAC
4. If SABC= 0 thenAB+BC= AC (Chasles’s axiom)
5. There are pointsA, B, C such thatSABC 6= 0 (dimension; not all points are collinear)
6. SABC= SDBC+SADC+SABD (dimension; all points are in the same plane)
7. For each elementr of F , there exists a pointP, such thatSABP= 0 andAP= rAB (construction of a point

on the line)
8. If A 6= B,SABP= 0,AP= rAB,SABP′ = 0 andAP′ = rAB, thenP= P′ (unicity)

9. If PQ‖CD and PQ
CD

= 1 thenDQ ‖ PC (parallelogram)

10. If SPAC 6= 0 andSABC= 0 thenAB
AC

= SPAB
SPAC

(proportions)

11. If C 6= D andAB⊥CD andEF ⊥CD thenAB‖ EF
12. If A 6= B andAB⊥CD andAB‖ EF thenEF ⊥CD

13. If FA⊥ BC andSFBC = 0 then 4S2
ABC= AF

2
BC

2
(area of a triangle)

Table 2.2 The axiom system

the Hilbert style geometry as theorems.4 Because of that, each conjecture that can be proved
by the axioms for the area method, is also a theorem of Hilbert’s geometry (assuming the
same inference system).

Relationship with the axiom system of Chou, Gao, and Zhang.Our axiom system is an ex-
tended and modified version of the original system by Chou, Gao, and Zhang. While their
axiom system deals with affine geometry only (and does not introduce the notion of Pythago-
ras difference), our system contains axioms about Pythagoras difference (axioms 11, 12,
and 13) and, thanks to that, deals with Euclidean geometry. Compared to the original ver-
sion, ours has also the advantage of being more precise and organised. The axiom system
we propose differs from the axiom system of Chou, Gao and Zhang in the following ways
too:

1. Our system does not use collinearity as a primitive notionand instead, collinearity is de-
fined by the signed area. Chou, Gao and Zhang’s system has axioms introducing prop-
erties of collinearity, and these axioms are then used for proving that three points are
collinear if and only ifSABC= 0 [9].

2. While Chou, Gao and Zhang’s axiom system restricts to ratios of directed parallel seg-
ments AB

CD
where the linesAB andCD are parallel, we skip this syntactical restriction

and can use ratios for arbitrary points. The consistency of the axiom system is preserved
because the concept of oriented distance can be interpretedin the standard Cartesian
model. The area method requires explicitly that for every ratio of directed segmentsAB

CD
,

AB is parallel toCD. Therefore, the area method is not a decision procedure for this
theory, as it can not prove or disprove all conjectures stated in the introduced language
because the method can not deal with ratios of the formAB

CD
if AB∦CD (however, it is a

decision procedure for the set of formulae from the restricted version of the language).

Finally, using our axiom system — more suitable for that task— we formally verified
(within theCoqproof assistant [61]) all the properties of the geometric quantities required

4 We don’t have formal proofs for these conjectures as they would involve formalisation of very complex
notions like orientation and area of a triangle, which is still beyond reach for current formalisation of Hilbert’s
geometry.
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by the area method, demonstrating the correctness of the system and eliminating all concerns
about provability of the lemmas [47].

2.3 Geometric Constructions

The area method is used for proving constructive geometry conjectures: statements about
properties of objects constructed by some fixed set of elementary constructions. In this sec-
tion we first describe the set of available construction steps and then the set of conjectures
that can be expressed.

2.3.1 Elementary Construction Steps

Constructions covered by the area method are closely related, but still different, from con-
structions by ruler and compass. These are the elementary constructions by ruler and com-
pass:

– construction of an arbitrary point;
– construction of an arbitrary line;
– construction (by ruler) of a line such that two given points belong to it;
– construction (by compass) of a circle such that its centre isone given point and such that

the second given point belongs to it;
– construction of a point such that it is the intersection of two lines (if such a point exists);
– construction of the intersections of a given line and a givencircle (if such points exists).
– construction of the intersections of two given circles (if such points exists).

The area method cannot deal with all geometry theorems involving the above construc-
tions. It does not support construction of an arbitrary line, and it supports intersections of
two circles and intersections of a line and a circle only in a limited way.

Instead of support for intersections of two circles or a lineand a circle (critical for
describing many geometry theorems), there are new, specificconstruction steps. All con-
struction steps supported by the area method are expressed in terms of the involved points.5

Therefore, only lines and circles determined by specific points can be used (rather than ar-
bitrarily chosen lines and circles) and the key construction steps are those introducing new
points. For a construction step to be well-defined, certain conditions may be required. These
conditions are callednon-degeneracy conditions(ndg-conditions).

In the following text, (LINE U V) will denote a line such that the pointsU andV belong
to it, and (CIRCLE O U) will denote a circle such that its centre is point O and such that the
point U belongs to it.

Some of the construction steps are formulated using the fixedfield (F,+, ·,0,1), em-
ployed by the used axiom system.

Given below is the list of elementary construction steps in the area method, along with
the corresponding ndg-conditions. Free points are introduced only by ECS1 and, ifr is a
variable, by ECS4 and by ECS5.

5 Elementary construction steps used by the area method do not use the concept of line and plane explicitly.
This is convenient from the point of view of formalisation andautomation. Indeed, in an axiom system based
only on the concept of points (as in Tarski’s axiom system [60]), the dimension implied can be easily changed
by adding or removing some appropriate axioms (stated in the original signature). On the other hand, in an
axiom system based on the concepts of points and lines, such as Hilbert’s axiom system, in order to extend
the system to the third dimension ones needs both to update someaxioms, to introduce some new axioms and
to change the signature of the theoryby introducing the sort of planes.
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ECS1 construction of an arbitrary point U; this construction step is denoted by (POINT U).
ndg-condition: –

ECS2 construction of a point Y such that it is the intersection of two lines (LINE U V) and
(L INE P Q); this construction step is denoted by (INTER Y U V P Q).
ndg-condition:UV ∦ PQ; U 6=V; P 6= Q.
A formula that corresponds to this construction step is:U 6= V ∧P 6= Q∧UV ∦ PQ∧
SUVY = 0∧SPQY = 0.

ECS3 construction of a pointY such that it is the foot from a given pointP to (LINE U V);
this construction step is denoted by (FOOT Y P U V).
ndg-condition:U 6=V
A formula that corresponds to this construction step is:U 6=V ∧PY⊥UV ∧SUVY = 0.

ECS4 construction of a pointY on the line passing through a pointW and is parallel to
(L INE U V), such thatWY= rUV, wherer is an element ofF , a rational expression in
geometric quantities, or a variable; this construction step is denoted by (PRATIO Y W U
V r).
ndg-condition:U 6= V; if r is a rational expression in the geometric quantities, the de-
nominator ofr should not be zero.
A formula that corresponds to this construction step is:U 6=V ∧WY‖UV ∧ WY

UV
= r.

ECS5 construction of a pointY on the line passing through a pointU and perpendicular to
(L INE U V), such that4SUVY

PUVU
= r, wherer is a rational number, a rational expression in

geometric quantities, or a variable; this construction step is denoted by (TRATIO Y U V
r).
ndg-condition:U 6=V; if r is a rational expression in geometric quantities then the de-
nominator ofr should not be zero.
A formula that corresponds to this construction step is:U 6=V ∧UY ⊥UV ∧ 4SUVY

PUVU
= r.

The above set of construction steps is sufficient for expressing many constructions based
on ruler and compass, but not all of them. For instance, an arbitrary line cannot be con-
structed by the above construction steps. Still, one can construct two arbitrary points and
then (implicitly) the line going through these points.

Also, intersections of two circles and intersections of a line and a circle are not supported
in a general case. However, it is still possible to constructintersections of two circles and
intersections of a line and a circle in some special cases. For example:

– construction of a pointY such that it is the intersection (other than pointU) of a line
(L INE U V) and a circle (CIRCLE O U) can be represented as a sequence of two con-
struction steps: (FOOT N O U V), (PRATIO Y N N U -1).

– construction of a point Y such that it is the intersection (other than pointP) of a circle
(CIRCLE O1 P) and a circle (CIRCLE O2 P) can be represented as a sequence of two
construction steps: (FOOT N P O1 O2), (PRATIO Y N N P-1).

In addition, many other constructions (expressed in terms of constructions by ruler and
compass) can be performed by the elementary constructions of the area method. Some of
them are:

– construction of a line such that a given pointW belongs to it and it is parallel to a line
(L INE U V); such line is determined by the pointsW andN, whereN is obtained by
(PRATIO N W U V 1).

– construction of a line such that a given pointW belongs to it and it is perpendicular to a
line (LINE U V); if W, U , V are collinear, then such line is determined by the pointsW
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andN, whereN is obtained by (TRATIO N W U 1), otherwise, such line is determined
by the pointsW andN, whereN is obtained by (FOOT N W U V).

– construction of a perpendicular bisector of a segment with endpointsU andV; such line
is determined by the pointsN andM, where these points are obtained by (PRATIO M U
U V 1/2), (TRATIO N M U 1).

Also, it is possible to construct an arbitrary pointY on a line (LINE U V), by (PRATIO Y
U U V r) wherer is an indeterminate, or on a circle (CIRCLE O P), by (POINT Q), (FOOT

N O P Q), (PRATIO Y N N P-1). There can be also used some additional construction steps
(with corresponding elimination lemmas) that can help producing shorted proofs in some
cases [8] but we will not describe them here.

Within a wider system (e.g., within a dynamic geometry tool), a richer set of construc-
tion steps can be used for describing geometry conjectures as long as all of them can be
represented by the elementary construction steps of the area method.

As said, the set of elementary construction steps in the areamethod cannot cover all
constructions based on ruler and compass. On the other hand,there are also some construc-
tions that can be performed by the above construction steps and that cannot be performed
by ruler and compass. For instance, if3

√
2∈ F then, given two distinct pointsA andB, one

can construct a third pointC such thatAC=
3
√

2AB, since one can use this number (whereas
it is not possible using ruler and compass).

Example 2.2 The construction given in Example 2.1 can be represented in terms of the
given construction steps as follows:

A,B,C,P are free points (ECS1)
(INTER D A P B C) (ECS2)
(INTER E B P A C) (ECS2)
(INTER F C P A B) (ECS2)

2.3.2 Constructive Geometry Statements

In the area method, geometry statements have a specific form.

Definition 2.2 (Constructive Geometry Statement)A constructive geometry statement, is
a list S= (C1,C2, . . . ,Cm,G) where Ci , for 1≤ i ≤ m, are elementary construction steps, and
the conclusion of the statement, G is of the form E1 = E2, where E1 and E2 are polynomials
in geometric quantities of the points introduced by the steps Ci . In each of Ci , the points used
in the construction steps must be already introduced by the preceding construction steps.

The class of all constructive geometry statements is denoted byC.
Note that, in its basic form, the area method does not deal with conclusion statements

in the form of inequalities (for another variants of the method see Section 2.5.8 and Sec-
tion 3.3.2).

For a statementS= (C1,C2, . . . ,Cm,(E1 = E2)) from C, the ndg-condition is the set of
the ndg-conditions of the stepsCi , plus the conditionsdi that the denominators appearing
in E1 andE2 are not equal to zero, and the conditionspi that lines appearing in ratios of
segments inE1 andE2 are parallel: for each ratio of the formAB

CD
appearing inE1 andE2,

there is a ndg-conditionAB‖CD. The logical meaning of a statement is hence:
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c1∧c2∧ ...∧cm∧
d1∧ ...∧dm∧
p1∧ ...∧ pm∧
⇒ E1 = E2

whereci are the formulae characterising the construction steps (including their ndg-conditions).
The formula above is assumed to be universally quantified.

The area method (as described in this paper) decides whetheror not a conjecture of the
above form is a theorem, i.e., whether it can be derived from the axiom system described
in Section 2.2.2. If a conjecture is a theorem in the theory ofthe area method, then it is
also a theorem of the Hilbert style geometry (as discussed inSection 2.2.2). Note that the
area method is applied for statements of the formH ⇒ E1 = E2, while definitions of some
geometry properties may involve inequalities as well, for instance, we say thatAB is parallel
to CD if PABA 6= 0∧PCDC 6= 0∧SACD = SBCD. Typically, when proving properties defined
in Table 2.1, instead of provingPABA 6= 0∧PCDC 6= 0∧SACD= SBCD, the method is applied
only for provingSACD = SBCD, which gives a weaker conjecture (for the special cases of
A= B andC= D). AddingA 6= B andC 6= D to the set of ndg-conditions, would ensure that
these two goals are equivalent.

Example 2.3 The statement corresponding to the theorem given in Example2.1 can be
represented as follows:

A 6= P∧B 6=C∧AP∦ BC∧SAPD = 0∧SBCD = 0∧
B 6= P∧A 6=C∧BP∦ AC∧SBPE = 0∧SACE = 0∧
C 6= P∧A 6= B∧CP∦ AB∧SCPF = 0∧SABF = 0∧
F 6= B∧D 6=C∧E 6= A∧
AF ‖ FB∧BD ‖ DC∧CE ‖ EA

⇒ AF
FB

BD
DC

CE
EA

= 1

2.4 Properties of Geometric Quantities and Elimination Lemmas

We present some definitions and the properties of geometric quantities, required by the area
method. We follow the material from original descriptions of the method [8,9,11,67], but
in a reorganised form. The rigorous traditional proofs (notformal) in the Hilbert’s style
geometry, accompanying all the results presented in this section are available [56]. The
formal (machine verifiable) proofs are available as aCoqcontribution [47].

The following lemmas are implicitly universally quantifiedand it is assumed that it holds
A 6= B for any ratio of parallel directed segments of the formXY

AB
.

Lemma 2.1 PQ
AB

=−QP
AB

= QP
BA

=−PQ
BA

.

Lemma 2.2 PQ
AB

= 0 iff P = Q.

Lemma 2.3 PQ
AB

AB
PQ

= 1.

Lemma 2.4 SABC= SCAB= SBCA=−SACB=−SBAC=−SCBA.

Lemma 2.5 PAAB= 0.
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Lemma 2.6 PABC= PCBA.

Lemma 2.7 PABA= 2AB
2
.

2.4.1 Elimination Lemmas

An elimination lemma is a theorem that has the following properties:

– it states an equality between a geometric quantity involving a certain constructed point
Y and an expression not involvingY;

– this last expression is composed using only geometric quantities;
– this expression is well defined: denominators are differentfrom zero and ratios of seg-

ments are composed only using parallel segments.

It is required to describe elimination of points introducedby four construction steps
(ECS2 to ECS5) from three kinds of geometric quantities.

Some elimination lemmas enable eliminating a point from expressions only at certain
positions — usually the last position in the list of the arguments. That is why it is necessary
first to transform relevant terms of the current goal into theform that can be dealt with by
these elimination lemmas. Moreover, some elimination lemmas require that some points are
assumed to be distinct. The first following lemma ensures that this assumptions can be met.

Lemma 2.8 If G is a geometric quantity involving Y, then either G is equal to zero or it can
be transformed into one of the following forms (or their sum or difference), for some A, B,
C, and D that are different from Y:

AY
CD

; AY
BY

;−AY
BY

; 1
AY
CD

;PABY;PAYB;SABY

Proof: If G is a geometric quantity of arity 4 (SABCD or PABCD), the first step is to trans-
form it into terms of arity 3, using the shorthands defined in section 2.2.2:SABCD≡ SABC+
SACD,PABCD≡ PABD−PCBD.

Now, all remaining geometric quantities (involvingY) can be treated.

Signed ratios:G can have one of the following forms (for someA, B, andC different from
Y):
• YY

AY
= 0 (by Lemma 2.2)

• YY
YA

= 0 (by Lemma 2.2)

• YY
CD

= 0 (by Lemma 2.2)

• AY
BY

• AY
YB

=−AY
BY

(by Lemma 2.1)

• YA
BY

=−AY
BY

(by Lemma 2.1)

• YA
YB

= AY
BY

(by Lemma 2.1)

• AY
CD

• YA
CD

=− AY
CD

(by Lemma 2.1)

• AB
CY

= 1
CY
AB

(by lemmas 2.1 and 2.3)

• AB
YC

= 1
CY
BA

(by lemmas 2.1 and 2.3)
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Signed area:G can have one of the following forms (for someA andB different fromY):
• SYYY= 0 (by Lemma 2.4)
• SAYY= 0 (by Lemma 2.4)
• SYAY= 0 (by Lemma 2.4)
• SYYA= 0 (by Lemma 2.4)
• SAYB= SBAY (by Lemma 2.4)
• SYAB= SABY (by Lemma 2.4)
• SABY

Pythagoras difference:G can have one of the following forms (for someA andB different
from Y):
• PYYY= 0 (by Lemma 2.5)
• PAYY= 0 (by lemmas 2.6 and 2.5)
• PYAY= PAYA (by Lemma 2.7)
• PYYA= 0 (by Lemma 2.5)
• PAYB

• PYAB= PBAY (by Lemma 2.6)
• PABY

Q.E.D.

If G(Y) is one of the following geometric quantities:SABY, SABCY, PABY, or PABCY for
pointsA, B, C different fromY, thenG(Y) is called alinear geometric quantity.

The following lemmas are used for elimination ofY from geometric quantities. Thanks
to Lemma 2.8, it is sufficient to consider only geometric quantities with only one occurrence
of Y and the caseAY

BY
. Therefore, it can be assumed thatY differs fromA, B, C, andD in the

following lemmas (although they are provable in a general case, unless stated otherwise).
This ensures thatY does not occur on the right hand sides appearing in the elimination
lemmas.

Lemma 2.9 (EL1) If Y is introduced by(INTERY U V P Q) then (we assume that A6=Y):6

AY

CY
=

{

SAPQ
SCPQ

if A is on UV
SAUV
SCUV

otherwise

AY

CD
=

{

SAPQ
SCPDQ

if A is on UV
SAUV
SCUDV

otherwise

Lemma 2.10 (EL2) If Y is introduced by(FOOT Y P U V) then (we assume that A6=Y):

AY

CY
=

{

PPUVPPCAV+PPVUPPCAU
PPUVPCVC+PPVUPCUC−PPUVPPVU

if A is on UV
SAUV
SCUV

otherwise

AY

CD
=

{

PPCAD
PCDC

if A is on UV
SAUV
SCUDV

otherwise

6 Notice that in this and other lemmas, the conditionA onUV is trivially met if A is one of the pointsU
andV. This special case may be treated as a separate case for the sake of efficiency.
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Lemma 2.11 (EL3) If Y is introduced by(PRATIO Y R P Q r) then (we assume that A6=Y):

AY

CY
=











AR
PQ

+r

CR
PQ

+r
if A is on RY

SAPRQ
SCPRQ

otherwise

AY

CD
=











AR
PQ

+r

CD
PQ

if A is on RY

SAPRQ
SCPDQ

otherwise

Lemma 2.12 (EL4) If Y is introduced by(TRATIO Y P Q r) then (we assume that A6=Y):

AY

CY
=







SAPQ− r
4PPQP

SCPQ− r
4PPQP

if A is on PY
PAPQ
PCPQ

otherwise

AY

CD
=







SAPQ− r
4PPQP

SCPDQ
if A is on PY

PAPQ
PCPDQ

otherwise

Lemma 2.13 (EL5) Let G(Y) be a linear geometric quantity and Y is introduced by(INTER

Y U V P Q). Then:

G(Y) =
SUPQG(V)−SVPQG(U)

SUPVQ
.

Lemma 2.14 (EL6) Let G(Y) be a linear geometric quantity and Y is introduced by(FOOT

Y P U V). Then:

G(Y) =
PPUVG(V)+PPVUG(U)

PUVU
.

Lemma 2.15 (EL7) Let G(Y) be a linear geometric quantity and Y is introduced by(PRA-
TIO Y W U V r). Then:

G(Y) = G(W)+ r(G(V)−G(U)).

Lemma 2.16 (EL8) If Y is introduced by(TRATIO Y P Q r) then:

SABY = SABP−
r
4
PPAQB.

Lemma 2.17 (EL9) If Y is introduced by(TRATIO Y P Q r) then:

PABY = PABP−4rSPAQB.

Lemma 2.18 (EL10) Let G(Y) be a linear geometric quantity and Y is introduced by(IN-
TER Y U V P Q) then it holds that:

PAYB=
SUPQ

SUPVQ
G(V)+

SVPQ

SUPVQ
G(U)− SUPQ ·SVPQ·PUVU

S2
UPVQ

.

Lemma 2.19 (EL11) Let G(Y) be a linear geometric quantity and Y is introduced by(FOOT

Y P U V) then:

PAYB=
PPUV

PUVU
G(V)+

PPVU

PUVU
G(U)− PPUV ·PPVU

PUVU
.
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Geometric Quantities
AY
CY

AY
CD

SABY SABCY PABY PABCY PAYB

ECS2 EL1 EL5 EL10

ECS3 EL2 EL6 EL11

ECS4 EL3 EL7 EL12

C
on

st
ru

ct
iv

e
S

te
ps

ECS5 EL4 EL8 EL9 EL13

Elimination Lemmas

Table 2.3 Elimination Lemmas

Lemma 2.20 (EL12) If Y is introduced by(PRATIO Y W U V r) then:

PAYB= PAWB+ r(PAVB−PAUB+2·PWUV)− r(1− r)PUVU.

Lemma 2.21 (EL13) If Y is introduced by(TRATIO Y P Q r) then:

PAYB= PAPB+ r2PPQP−4r(SAPQ+SBPQ).

The information on the elimination lemmas is summarised in Table 2.3.
On the basis of the above lemmas, given a statementS, it is always possible to elimi-

nate all constructed points (in reverse order) leaving onlyfree points, numerical constants
and numerical variables. Namely, by Lemma 2.8, all geometric quantities are transformed
into one of the standard forms and then appropriate elimination lemmas (depending on the
construction steps) are used to eliminate all constructed points.

2.5 The Algorithm and its Properties

In this section we present the area method’s algorithm. As explained in section 2.1, the idea
of the method is to eliminate all the constructed points and then to transform the statement
being proved into an expression involving only independentgeometric quantities.

2.5.1 Dealing with Side Conditions in Elimination Lemmas

Apart from ndg-conditions of the construction steps, thereare also side conditions in some of
the elimination lemmas. Namely, some elimination lemmas have two cases (side conditions)
— positive (always of the form “A is onPQ”) and negative (always of the form “A is not on
PQ”). As in the case of ndg-conditions, the positive side conditions (those of the form “A is
on PQ”) can also be expressed in terms of geometric quantities (asSAPQ= 0) and checked
by the area method itself. Negative side conditions (expressed adSAPQ 6= 0) can also be
proved in some situations.

Namely, if the area method is applied to a conjecture with a goal of the formE1 6= E2

and if it ends up with an inequality that is a trivial theorem (e.g., 06= 1), then the original
statement is a theorem.

In one variant of the area method (implemented in GCLCprover, see 3.1), non-degeneracy
conditions can be introduced not only at the beginning (based on the hypotheses), but also
during the proving process. If a side condition for the positive case of a branching elimina-
tion lemma (the one of the formL=R) can be proved (as a lemma), then that case is applied.
Otherwise, if a side condition for the negative case (the oneof the formL 6=R) can be proved
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(as a lemma), then that case is applied (see Section 2.5.8 forthis variation of the method).
Otherwise, the condition for the negative case is assumed and introduced as an additional
non-degeneracy condition. Therefore, this approach includes proving subgoals (which initi-
ate a new proving process on that new goal). However, there isno branching, so the proof is
always sequential, possibly with lemmas integrated. Lemmas are being proved as separate
conjectures, but, of course, sharing the construction and non-degeneracy conditions with the
outer context. Note that in this variant of the method, the statement proved could be weaker
than the original, given statement as the method mayintroduceadditional ndg-conditions.
Moreover, ndg-conditions that the method may introduce could be unnecessary, and the re-
sulting statement could be less general than necessary.

In another variant of the method (implemented inCoq, see 3.2), if a condition for one
case can be proved, then that case is applied, otherwise bothcases are considered separately.
Therefore, this variant may produce branching proofs (but does not generate additional ndg-
conditions). Note that this variant does not change the initial statement and does not risk
introducing ndg-conditions which are not needed. Indeed, for example, in some contexts it
could be the case that neitherA always belongs toCD nor always it does not belong toCD,
but the statement to be proved is still true inbothcases. Using the first variant of the method,
in such cases, the conditionSACD 6= 0 would be added to the statement whereas the theorem
could be proved without this assumption.

2.5.2 Uniformization

The main goal of the phase of eliminating constructed pointsis that all remaining geometric
quantities are independent. However, this is not exactly the case, because two equal geo-
metric quantities can be represented by syntactically different terms. For instance,SABC can
also be represented bySCAB. To solve this issue, it is needed to uniformize the geometric
quantities that appear in the statement. For this purpose, aset of conditional rewrite rules is
used. To ensure termination, these rules are applied only whenA, B andC stand for variables
whose names are in alphabetic order.

The uniformization procedure consists of applying exhaustively the following rules:

BA → −AB by Lemma 2.1
SBCA → SABC SACB → −SABC

SCAB → SABC SBAC → −SABC

SCBA → −SABC

by Lemma 2.4

PCBA → PABC by Lemma 2.6
PBAB → PABA by Lemma 2.7

2.5.3 Simplification

For simplification of the statement the following rewrite rules are applied.
Degenerated geometric quantities:

YY
AB

→ 0 SAAB→ 0 PAAB→ 0
SBAA→ 0 PBAA→ 0
SABA→ 0
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Ring simplifications:

a·0→ 0 0+a → a −0 → 0 (−a) ·b → −(a·b)
0·a→ 0 a+0 → a −−a → a a· (−b) → −(a·b)
1·a→ a a−0 → a −a+a → 0 −a·−b → a·b
a·1→ a 0−a → −a a+(−b) → a−b

a−a → 0 −b+a → a−b

c1+c2 → c3 wherec1 andc2 are constants (elements ofF) andc1+c2 = c3

c1 ·c2 → c3, wherec1 andc2 are constants (elements ofF) andc1 ·c2 = c3

Field simplifications (ifa 6= 0):

a
a → 1 0

a → 0 −b
a → − b

a
a
−a → −1 a

1 → a b
−a → − b

a
−a
a → −1 a· ( 1

a) → 1 a·b
a → b

−a
−a → 1 b·a

a → b

2.5.4 Dealing with Free Points: Area Coordinates

The elementary construction step ECS1 introduces arbitrary points. Such points are the
free pointson which all other objects are based. For a geometric statement S= (C1,C2,
. . . ,Cm,(E1 = E2)), one can obtain two rational expressionsE′

1 andE′
2 in ratios of directed

segments, signed areas and Pythagoras differences in onlyfree points, numerical constants
and numerical variables. Most often, this simply leads to equalities that are trivially provable
(as in Ceva’s example). However, the remaining geometric quantities can still be mutually
dependent, e.g., for any four pointsA, B, C, andD, by Axiom 6:

SABC= SABD+SADC+SDBC

In such cases, it is needed to reduceE′
1 andE′

2 to expressions in independent variables. For
that purpose thearea coordinatesare used.

Definition 2.3 Let A, O, U, and V be four points such that O, U, and V are not collinear.
The area coordinates of A with respect to OUV are:

xA =
SOUA

SOUV
, yA =

SOAV

SOUV
, zA =

SAUV

SOUV
.

It is clear that xA+yA+zA = 1.

It holds that the points in the plane are in an one to one correspondence with their area
coordinates. To representE1 andE2 as expressions in independent variables, first three new
pointsO, U , andV, such thatOU ⊥ OV andd= OU = OV, are introduced (for somed from
F). ExpressionsE1 andE2 can be transformed to expressions in the area coordinates ofthe
free points with respect toOUV.

For any pointP, let XP denoteSOUP, letYP denoteSOVP, and letCol(A,B,C) denote the
fact thatA, B andC are collinear.
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Lemma 2.22 For any points A, B, C and D such that C6= D and AB‖CD:

AB

CD
=























































XCYA−XCYB−YAXB+YBXA−YCXA+YCXB
XCYA−XCYD−YAXD−YCXA+YCXD+XAYD

if not Col(A,C,D)

XBYA−XAYB
XDYC−XCYD

if Col(A,C,D) and
not Col(O,A,C)

SOUV(XB−XA)+XBYA−XAYB
SOUV(XD−XC)+XDYC−XCYD

if Col(A,C,D) and
Col(O,A,C) and
not Col(U,A,C)

SOUV(YB−YA)+XBYA−YBXA
SOUV(YD−YC)+XDYC−YDXC

otherwise

Lemma 2.23 For any points A, B and C:
SABC= (YB−YC)XA+(YC−YA)XB+(YA−YB)XC

SOUV
.

Lemma 2.24 For any points A, B and C:

PABC= 8(YAYC−YAYB+Y2
B−YBYC−XAXB+XAXC+X2

B−XBXC

d2 ).

Lemma 2.25 SOUV =± d2

2 .

Using lemmas 2.22 to 2.25, expressionsE1 andE2 can be written as expressions ind2,
and in the geometric quantities of the formSOUP or SOVP whereP is a free point (there isV
such thatSOUV = d2

2 ).
After this transformation, the equalityE1 = E2 is transformed into an equality over

independent variables and numerical parameters.

2.5.5 Deciding Equality of Two Rational Expressions

After the elimination of constructed points, uniformization of geometric quantities, treat-
ment of the free points, and the simplification, an equality between two rational expressions
involving only independent quantities is obtained. To decide such an equality (by transform-
ing its two sides), the following (terminating) rewrite rules are used.

Reducing to a single fraction:

a
b +c → a+c·b

b a· b
c → a·b

c
a
b
c
→ a·c

b

c+ a
b → c·b+a

b
a
b ·c → a·c

b

a
b
c → a

b·c
a
b +

c
b → a+c

b
a
b · c

d → a·c
b·d

a
b
c
d
→ a·d

c·b
a
b +

c
d → a·d+c·b

bd

Reducing to an equation without fractions:

a
b = c → a= c·b a

b = c
b → a= c

c= a
b → c·b= a a

b = c
d → a·d = c·b

Reducing to an equation where the right hand side is zero:

a= c→ a−c= 0

Reducing left hand side to right associative form:
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((a+b)+c) → a+(b+c) a· (b+c) → a·b+a·c
((a·b) ·c) → a· (b·c) (b+c) ·a → b·a+c·a

a·c→ c·a, wherec is a constant (element ofF) anda is not a constant.
a· (c·b)→ c· (a·b) wherec is a constant (element ofF) anda is not a constant.
c1 · (c2 ·a)→ c3 ·a wherec1 andc2 are constants (elements ofF) andc1 ·c2 = c3.
E1+ · · ·+Ei−1+c1 ·C+Ei+1+ · · ·+E j−1+c2 ·C′+E j+1+ · · ·+En → E1+ · · ·Ei−1+

c3 ·C+Ei+1+ · · ·+E j−1+E j+1+ · · ·+En, wherec1, c2 andc3 are constants (elements of
F) such thatc1+ c2 = c3 andC andC′ are equal products (with all multiplicands equal up
to permutation).

The above rules are used in the “waterfall” manner: they are tried for applicability, and
when one rule is (once) applied successfully, then the list of the rules is tried from the top.
The ordering of the rules can impact the efficiency to some extent.

The original equality is provable if and only if it is transformed to 0= 0.
Note that all the rules involving ratios given above can be applied to ratios of directed

segments, as (following the axiom system given in Section 2.2.2) ratios of directed segments
are ratios overF. Since these rules are applied after the elimination process, there is no
danger of leaving segment lengths involving constructed points (by breaking some ratios of
segments). However, in this approach all ratios are handledonly at the end of the proving
process. To increase efficiency, it is possible to use these rules during the proving process.
Namely, all the rules involving ratios can be used also in thesimplification phase, but not
applied to ratios of segments (they are treated as special case of ratios). The first approach
is implemented inCoq(see Section 3.2), the second in GCLCprover (see Section 3.1).

The set of rules given above is not minimal, in a sense that some rules can be omitted
and the procedure for deciding equality would still be complete. However, they are used for
efficiency. Also, additional rules can be used, as long as they are terminating and equivalence
preserving.

2.5.6 Non-degeneracy Conditions

Some construction steps are possible only if certain conditions are met. For instance, the
construction of the intersection of linesa and b is possible only if the linesa and b are
not parallel. For such construction steps, ndg-conditionsare stored and considered during
the proving process. Non-degeneracy conditions of the construction steps have one of the
following two forms:

– A 6= B or, equivalently,PABA 6= 0;
– PQ∦UV or, equivalently,SPUV 6= SQUV.

A ndg-condition of a geometry statement is the conjunction of ndg-conditions of the
corresponding construction steps, plus the conditions that the denominators of the ratios
of parallel directed segments in the goal equality are not equal to zero, and the conditions
that AB‖ CD for every ratio AB

CD
that appear in the goal equality. As said in Section 2.3.2,

it is proved that the goal equality follows from the construction specification and the ndg-
conditions. Hence, if the negation of some ndg-condition ofa geometry statement is met
(i.e., if it is implied by the preceding construction steps), the left-hand side of the implication
is inconsistent and the statement is trivially a theorem (sothere is no need for activating
the mechanism for transforming the goal equality). Negations of these ndg-conditions are
checked during the proving process. As seen from the above forms, these negations can
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be expressed as equalities in terms of geometric quantitiesand can be checked by the area
method itself.

As an example, consider a theorem about animpossible construction. Let A, B andC
be three arbitrary points (obtained by ECS1). LetD be on the line parallel toAB passing
throughC (obtained by ECS4). LetI be the intersection ofABandCD (obtained by ECS2).
Then, the assumptions of any statementG to be proved about these points are inconsistent
since the construction ofD implies AB ‖ CD and the construction ofI implies AB ∦ CD.
Therefore,G is trivially a theorem.

Additional ndg-conditions (additional with respect to theoriginal statement) may be
introduced during the proving process in the non-branchingapproach (see Section 2.5.1) to
ensure that the elimination lemmas with side-conditions can be applied.

Ndg-conditions from definitions given in Table 2.1, are never a part of the assumptions
of a statement, since the assumptions are built from the construction steps and the goal
equality. They can be used only as goal equalities (or goal inequalities — see Section 2.5.8),
when proving some of the properties defined as in Table 2.1, toensure a full compliance
with the Hilbert style geometry for degenerative cases.

2.5.7 The Algorithm

The area method checks whether a constructive geometry statement(C1,C2, . . . ,Cm,E1 =
E2) is a theorem or not, i.e., it checks whetherE1 = E2 is a deductive consequence of the
construction(C1,C2, . . . ,Cm), along with its ndg-conditions. As said, the key part of the
method is eliminating constructed points from geometric quantities. The point are intro-
duced one by one, and are eliminated from the goal expressionin the reverse order.

Algorithm: Area method
Input: S= (C1,C2, . . . ,Cm,(E1 = E2)) is a statement inC.
Output: The algorithm checks whetherS is a theorem or not and produces a corresponding

proof (consisting of all single steps performed).

1. initially, the current goal is the given conjecture; translate the goal in terms of ge-
ometric quantities using Table 2.1 in Section 2.2.1 and generate all ndg-conditions
for S;

2. process all the construction steps in reverse order:
(a) if the negation of the ndg-condition of the current construction step is met, then

exit and report that the conjecture is trivially a theorem; otherwise, this ndg-
condition is one of the assumptions of the statement.

(b) simplify the current goal (by using the simplification procedure, described in
2.5.3);

(c) if the current construction step introduces a new pointP, then eliminate (by
using Lemma 2.8 and the elimination lemmas) all occurrencesof P from the
current goal;

3. uniformize the geometric quantities (using the uniformization rules, described in
2.5.2);

4. simplify the current goal (by using the simplification procedure, described in 2.5.3);
5. test if the obtained equality is provable (by using the procedure given in 2.5.5); if

yes, then the conjectureE1 = E2 is provable, under the assumption that the ndg-
conditions hold, otherwise:
(a) eliminate the free points (using the area coordinates, as described in 2.5.4);
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(b) simplify the current goal (by using the simplification procedure, described in
2.5.3);

(c) test if the obtained equality is provable (by using the procedure given in 2.5.5);
if yes, then the conjectureE1 = E2 is proved, under the assumption that the
ndg-conditions hold. Otherwise the conjecture is not a theorem.

Checking the ndg-conditions within the main loop can also beperformed by the area
method itself (based on the construction steps that precedethe current step).

2.5.8 Properties of the Area Method

Termination.Since there is a finite number of constructed points, there isa finite number of
occurrences of these points in the statement, and since in each application of the elimination
lemmas there is at least one occurrence of a constructed points eliminated, it follows that
all constructed points will be eventually eliminated from the statement. Therefore, as the
simplification procedure and the procedure for deciding equality over independent parame-
ters terminate, the whole of the method terminates as well. The number of ngd-conditions
is always finite, so it can be proved by a simple inductive argument that the method termi-
nates also if it is used for checking ndg-conditions (since in each recursive call there is less
ndg-conditions).

Correctness.The area method (as described here) is applied to geometry statements of the
form C ⇒ E1 = E2. If some of ndg-conditions is inconsistent with the previously intro-
duced ndg-conditions, the formulaC is inconsistent, so the statement is trivially a theorem.7

Otherwise, the method transforms the initial formula to a formulaC ⇒ E′
1 = E′

2 such that
the equalityE′

1 = E′
2 involves only independent variables.8 Thanks to the properties of the

elimination lemmas and of the simplification procedure, theinitial formula9 is a theorem
(i.e., is a consequence of the axioms) if and only if the final formula is a theorem. Hence,
if E′

1 = E′
2 is provable, then the original statement is a theorem. IfE′

1 = E′
2 is not provable,

the original statement is not a theorem (sinceC is consistent). In summary, the original for-
mula is a theorem if and only ifC is inconsistent orE′

1 = E′
2 is provable. Therefore, thanks

to the properties of the simplification procedure, ifE′
1 is identical toE′

2, the statement is a
theorem. Otherwise, since all geometric quantities appearing in E′

1 andE′
2 are independent

parameters, in the geometric construction considered theycan take arbitrary values, so it is
possible to choose concrete values that lead to a counterexample for the statement. There-
fore, the method is terminating, sound, and complete: for each geometry statement (defined
in Section 2.3.2), the method can decide whether or not it is atheorem, i.e., the method is a
decision procedure for that fragment of the theory with the given axiom system.10

Each conjecture that can be proved by the axioms for the area method is also a theorem
of Hilbert’s geometry (as explained in Section 2.2.2).

7 The number of ngd-conditions is always finite, so it can be proved by a simple inductive argument that
the area method can be used for checking ndg-conditions.

8 In the non-branching variant of the method (see Section 2.5.1), the formulaC may be augmented by
additional ndg-conditions along the proving process.

9 In the non-branching variant of the method (see Section 2.5.1), the initial formula may be updated.
10 This fragment can also be defined as a quantifier-free theory with the set of axioms equal to the set of

all introduced lemmas. It can be easily shown that this theory is a sub-theory of Euclidean geometry (e.g.,
built upon Hilbert’s axioms) augmented by the theory of fields (where the theory of fields enable expressing
measures and expressions).
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The area method can also be used for proving (some) geometry statements of the form
C⇒E1 6=E2. If C is inconsistent, the statement is trivially a theorem. Otherwise, the method
transforms the initial formula to a formulaC⇒ E′

1 6= E′
2. The initial formula is a theorem if

and only if the final formula is a theorem. Hence, ifE′
1 6= E′

2 is provable,11 then the original
statement is a theorem. IfE′

1 6= E′
2 is not provable, the original statement is not a theorem

(sinceC is consistent). In summary, the original formula is a theorem if and only if C is
inconsistent orE′

1 6= E′
2 is provable.

Complexity.The core of the method does not have branching (unless the variant considering
both cases in ndg-conditions is used, as explained in Section 2.5.6), which makes it very
efficient for many non-trivial geometry theorems (still, the area method is less efficient than
provers based on algebraic methods [9]).

The area method can transform a conjecture given as an equality between rational ex-
pressions involving constructed points, to an equality notinvolving constructed points. Each
application of elimination lemmas eliminates one occurrence of a constructed point and re-
places a relevant geometric quantity by a rational expression with a degree less than or equal
to two. Therefore, if the original conjecture has a degreed and involvesn occurrences of
constructed points, then the reduced conjecture (without constructed points) has a degree of
at most 2n [9]. However, this degree is usually much less, especially if the simplification
procedures are used along the elimination process. The above analysis does not take into
account the complexity of the elimination of free points andthe simplification process.

3 Implementations of the Area Method

In this section we describe specifics of our two (independent) implementations of the area
method and briefly describe other two implementations. We also describe some applications
of these implementations.

3.1 The Area Method in GCLC

The theorem prover GCLCprover, based on the area method, is part of a dynamic geometry
tool GCLC. This section begins with a brief description of GCLC.

3.1.1 GCLC

GCLC12 [29,32] is a tool for the visualisation of objects and notions of geometry and other
fields of mathematics. The primary focus of the first versionsof the GCLC was producing
digital illustrations of Euclidean constructions in LATEX form (hence the name “Geometry
Constructions→ LATEX Converter”), but now it is more than that: GCLC can be used in
mathematical education, for storing visual mathematical contents in textual form (as figure
descriptions in the underlying language), and for studyingautomated reasoning methods
for geometry. The basic idea behind GCLC is that constructions are abstract, formal proce-
dures, rather than images. Thus, in GCLC, mathematical objects are described rather than

11 ProvingE′
1 6= E′

2 may not be trivial, for instance, in the examplex2+1 6= 0.
12 http://www.matf.bg.ac.rs/~janicic/gclc
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drawn. A figure can be generated (in the Cartesian model of Euclidean plane) on the ba-
sis of an abstract description. The language of GCLC [32] consists of commands for basic
definitions and constructions, transformations, symboliccalculations, flow control, drawing
and printing (including commands for drawing parametric curves and surfaces, functions,
graphs, and trees), automated theorem proving, etc. Libraries of GCLC procedures provide
additional features, such as support for hyperbolic geometry. GCLC has been under constant
development since 1996. It is implemented inC++ , and consist of around 40000 lines of
code (automated theorem provers take around half of it, while the area method takes around
8000 lines of code).

WinGCLC is a version with aMS-Windowsgraphical interface that makes GCLC a
dynamic geometry tool with a range of additional functionalities (Figure 3.2).

Example 3.1 The example GCLC code given in Figure 3.1 (left) describes a triangle and
the midpoints of two of triangle’s sides. From this GCLC code, Figure 3.1 (right) can be
generated.

point A 20 10

point B 70 10

point C 35 40

midpoint B’ B C

midpoint A’ A C

drawsegment A B

drawsegment A C

drawsegment B C

drawsegment A’ B’

cmark b A

cmark b B

cmark t C

cmark l A’

cmark r B’
A B

C

A′ B′

Fig. 3.1 A description of a triangle and midpoints of two of triangle’ssides in GCLC language (left) and the
corresponding illustration (right)

3.1.2 Integration of the Area Method

GCLC has three geometry theorem provers for Euclidean constructive theorems built in: a
theorem prover GCLCprover based on the area method, developed by Predrag Janičić and
Pedro Quaresma [33], and algebraic theorem provers based onthe Gr̈obner bases method
and on Wu’s method, developed by Goran Predović and Predrag Janičić [51]. Thanks to
these theorem provers, GCLC links geometrical contents, visual information, and machine–
generated proofs.

The provers are tightly integrated in GCLC — one can use the provers to reason about
objects introduced in a GCLC construction without any adaptations other than the addition
of the conjecture itself. GCLCprover transforms a construction command into a form re-
quired by the area method (and, for that purpose, may introduces some auxiliary points). A
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Fig. 3.2 WinGCLC Screenshot (the textual description on the left hand side and the visualisation on the right
hand side depict the circumcircle, the inscribed circle, andthe three escribed circles of the triangleABC)

conjecture is given in the formE1 = E2, whereE1 andE2 are expressions over geometric
quantities. Alternatively, a conjecture can be given in theform of higher-level notions (given
in Table 2.1). For instance, for the construction shown in Example 3.1, it holds that the lines
ABandA′B′ are parallel and this conjecture can be given as an argument to theprove com-
mand:prove {parallel A B A’ B’}, after the description of the construction. The prover
is invoked at the end of processing of the GCLC file and it considers only abstract specifi-
cation of the construction (and not Cartesian coordinates of of the points involved, given by
the user for visualisation purposes). There are GCLC commands for controlling a levels of
detail for the output and for controlling the maximal numberof proof steps or maximal time
spent by the prover.

Thanks to the implementation inC++ and to the fact that there are no branching in
the proofs, GCLCprover is very efficient and can prove many complex theorems in only
milliseconds (for examples see the GeoThms web repository described in Section 3.4.1).

3.1.3 Specifics of the Implementation in GCLC

The algorithm implemented in GCLCprover is the one described in Section 2.5.7, with some
specifics, used for increased efficiency and/or simpler implementation. With respect to the
simplification procedure described in 2.5.3, there are the following specifics:

– The unary operator “−” is not used (and instead−x is represented as(−1) · x). Hence,
the rules involving this operator are not used.

– The rules involving fractions given in 2.5.5 are not appliedto ratios of segments. Instead,
the following rules are used within the simplification procedure AB

AB
→ 1, AB

BA
→−1.
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– The following additional rules are used within the simplification phase:

– x
c → (1/c) ·x, wherec is a constant (element ofF) andc 6= 1.

– E1·...·Ei−1·C·Ei+1·...·En
E′

1·...·E′
j−1·C·E′

j+1·...·E′
m
→ E1·...·Ei−1·Ei+1·...·En

E′
1·...·E′

j−1·E′
j+1·...·E′

m

– E1+ · · ·+Ei−1+ c1 ·C+Ei+1+ · · ·+En = E′
1+ · · ·+E′

j−1+ c2 ·C′+E′
j+1+ · · ·+

E′
m → E1+ · · ·+Ei−1+c3 ·C+Ei+1 · · ·+En = E′

1+ · · ·+E′
j−1+E′

j+1+ · · ·+E′
m

wherec1, c2, andc3 are constants (elements ofF) such thatc1−c2 = c3 andC and
C′ are equal products (with all multiplicands equal up to permutation).

– If the current goal is of the formE1+ . . .+En = E′
1+ . . .E′

m and if all summandsEi

andE′
j have a common multiplication factorX, then try to prove that it holdsX = 0:

• if X = 0 has been proved, the current goal can be rewritten to 0= 0;
• if X = 0 has been disproved (i.e., ifX 6= 0 has been proved), then both sides in

the current goal can be cancelled byX;
• if neitherX = 0 norX 6= 0 can be proved, then assumeX 6= 0 (and add to the

list of non-degeneracy conditions) and cancel both sides inthe current goal by
X.

– The uniformization procedure (2.5.2) is used within the simplification procedure. In
addition, the ruleSABC→ 0 is applied for each three collinear pointsA, B, C.

– Reducing to area coordinates is not implemented. Instead, the following rules are applied
at that stage:

– AA→ 0
– SABC → SABD+SADC+SDBC, if there are termsSABD, SADC, SDBC in the current

goal.

– PABC→ AB
2
+CB

2
+−1·AC

2

Note that after these rules have been applied, the equality being proved may still involve
dependent parameters. The simplification process is applied again and the equality is
tested once more. Even without reducing to area coordinates, the above rules enable
proving most conjectures from the area method scope.

Concerning ndg-conditions, the prover records and reportsabout the ndg-conditions of
construction steps, but there is no check of the ndg-conditions within the main loop by the
area method itself (as described in Section 2.5.7). Instead, there is a semantic check, using
floating numbers and Cartesian coordinates associated to the free points by the user. For each
construction step, it is checked if it is possible (e.g., if two lines do intersect) and these tests
corresponds to checking the ndg-conditions of the geometrystatement. If all these checks
pass successfully (i.e., if all construction steps are possible), all the ndg-conditions are true
in the concrete model, and hence, the assumptions of the statement are consistent.13 In
that case, the construction is visualised and the conjecture is sent to the prover. Otherwise,
if some of the checks fails, an error is reported, the construction is not visualised, and the
conjecture is not sent to the prover.

If a side condition for one case of a branching elimination lemma can be proved, then
that case is applied, otherwise, a condition for the negative case is assumed and introduced
as an additional ndg-condition (as explained in Section 2.5.1). The same approach is used
when applying the cancellation rule (see section 3.1.3).

13 Ensuring consistency is important for the case that the original goal transforms to an equality that is not
valid. In that case, the original statement is not a theorem (see Section 2.5.8).
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3.1.4 Prover Output

The proofs generated by GCLCprover14 can be exported to LATEX or to XML form using a
special-purpose styles and with options for different formatting. At the beginning of an out-
put document, the auxiliary points are defined. For each proof step (a single transformation
of the goal being proved), there is an ordinal numbers, an explanation and, optionally, its
semantic counterpart — as a check (based on floating-point numbers) whether a conjecture
is true in the specific case determined by Cartesian coordinates associated (by the user, for
the sake of visualisation) to the free points of the construction (this semantic information is
useful for conjectures for which is not known whether or not they are theorems). Lemmas
(about side conditions) are proved within the main proof (making nested proof levels). At
the end of the proof, all non-degeneracy conditions are listed. In the following is a fragment
of the output (generated in LATEX) for the conjecture from Example 3.1:

SAA′B′ = SBA′B′
by the statement (1)

SB′AA′ = SB′BA′
by geometrical simplifications (2)

(

SB′AA+
(

1
2 ·

(

SB′AC+
(

−1 ·SB′AA

))))

= SB′BA′
by Lemma 29 (pointA′ eliminated) (3)

. . .

0 =
(

0+
(

1
2 · (0+(−1 ·0))

))

by geometrical simplifications (15)
0 = 0

by algebraic simplifications (16)

Q.E.D.

There are no ndg conditions.

Number of elimination proof steps: 5
Number of geometrical proof steps: 15
Number of algebraic proof steps: 25
Total number of proof steps: 45
Time spent by the prover: 0.001 seconds

3.2 The Area Method inCoq

This section describes the formalisation of the area methodusing the proof assistantCoq.
Coq is a general purpose proof assistant [1,28,61]. It allows one to express mathematical
assertions and to mechanically check proofs of these assertions.

3.2.1 Coq

Although theCoq system has some automatic theorem proving features, it isnot an au-
tomatic theorem prover. The proofs are mainly built by the user interactively. The system
allows one to formalise proofs in different domains. For instance, it has been used for the
formalisation of the four colour theorem [22] and the fundamental theorem of algebra [21].
In computer science, it can be used to prove correctness of programs, like a C compiler that
has been developed and proved correct usingCoq[38].

There are several recent results in the formalisation of elementary geometry in proof
assistants: Hilbert’sGrundlagen[27] has been formalised in Isabelle/Isar [42] and inCoq
[16]. Gilles Kahn has formalised Jan von Plato’s constructive geometry in theCoq sys-
tem [34,49]. Fŕed́erique Guilhot has made a large development inCoqdealing with French
high school geometry [24]. Julien Narboux has formalised Tarski’s geometry using theCoq
proof assistant [46]. Jean Duprat proposes the formalisation in Coqof an axiom system for

14 There are no object-level proofs verifiable by theorem proving assistants.
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compass and ruler geometry [17]. Projective geometry has also been formalised inCoq[40,
41].

3.2.2 Formalisation of the Area Method

The goal of the formalisation of the area method (inCoq) is to bring the level of automa-
tion provided by the method to theCoqproof assistant. This is done by implementing the
decision procedure as aCoq tactic and formalising all theorems needed by the method. We
defined an axiom system, proved all the propositions needed by the tactics (we formally
proved more than 700 lemmas) and wrote the tactics. TheCoq development15 consists of
about 7000 lines of specifications (this includes the statements of the lemmas and the tac-
tics), and 6400 lines of proofs.

Conceptually, proving the propositions and writing the tactics that use them seem to be
two separate tasks. But to ease the development, in our implementation we have intermixed
the proofs of the propositions and the tactics. We bootstrappartially the construction of the
whole decision procedure by using some automatic tactics for the proof of the elimination
lemmas. Our tactic is decomposed into sub-tactics performing the following tasks: initiali-
sation; simplification; uniformization; elimination of constructed points; elimination of free
points; conclusion.

The implementation of the prover is realized using the languageLtac
16 which is inte-

grated in the systemCoq.
We did not prove formally the completeness of the method implementation (i.e., that the

tactic always succeeds if the conjecture is a theorem). Our formal proofs guarantee only the
soundness of the method implementation (i.e., the proofs generated by the tactic are always
correct).

3.2.3 Specifics of the Implementation in Coq

In this section, we describe the algorithm which is used in the Coq’s implementation of the
area method.

As the method is implemented within a proof assistant, each step of the algorithm cor-
responds to a proof step that is checked by theCoq system. At the end of the proof, it is
checked another time by theCoq kernel as explained in section 3.2.5. The main difficulty
is thatCoqmust be “convinced” at each step that the transformation we perform is correct.
For this we have to maintain two invariants:

1. For eachsyntacticexpression which occurs at the denominator of some fraction(of the
goals or of an assumption), the context always contains a proof that it is not zero.

2. For eachsyntacticexpression which represents a ratio of directed segments (AB/CD),
the context always contains a proof thatAB is parallel toCD.

The algorithm implemented inCoq corresponds to the algorithm described in Sec-
tion 2.5.7. We give details only for the phases with specific features.

15 http://dpt-info.u-strasbg.fr/~narboux/area_method.htm
16 The Ltac language is a domain specific language which allows the user towrite his/her own proof

schemes.
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Initialisation.The initialisation phase performs the following tasks:

1. unfold definitions;
2. introduce hypotheses in the context;
3. encode constructions of half-free points (points that belong to a line or a circle) into

constructions of fixed points with a parameter;
4. compose simple constructions into more complex constructions when it is possible;
5. transform hypotheses of the formA 6= B into AB 6= 0
6. split conjunctions in the goali.e.decompose conjunctions in the goal into several goals;
7. check that the invariants are initially satisfied.

Dealing with Non-degeneracy Conditions and Case Splits in Lemmas.As GCLC, the Coq
implementation does not deal with ndg conditions, we assumethat the statement is not
contradictory.

Concerning case splits in elimination lemmas, new ndg-conditions are not generated
(unlike in GCLCprover) and, instead, case distinction is performed (as explained in Sec-
tion 2.5.1).

We give a detailed description of how the tactic works on the example 3.2 by decom-
posing the procedure into small steps17.

The midpoint theorem is stated using our language in the syntax ofCoqas follows:

Example 3.2

Theorem midpoint_A :

forall A B C A’ B’ : Point, midpoint A’ B C ->

midpoint B’ A C -> parallel A’ B’ A B.

geoInit.

1 subgoal

A : Point

B : Point

C : Point

A’ : Point

B’ : Point

H : on_line_d A’ B C (1 / 2)

H0 : on_line_d B’ A C (1 / 2)

============================

S A’ A B’ + S A’ B’ B = 0

on line d A’ B C (1/2) states that A′ is on line BC andBA′
BC

= 1
2 .

At this step it would be enough to typearea method to solve the goal using our decision
procedure, but for this presentation we mimic the behaviourof the decision procedure using
our sub-tactics. We give the name of the sub-tactics on the left, andCoqoutput on the right18:

17 These steps are not exactly the same steps as those executed byour automatic procedure (the automatic
procedure may treat the points in another order, and perform more simplification and unification steps).

18 For this presentation the fact thatA, B, C, A′, andB′ are of typePoint has been removed from the
context.
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geoInit. H : on line d A’ B C (1 / 2)

H0 : on line d B’ A C (1 / 2)

============================

S A’ A B’ + S A’ B’ B = 0

eliminate B’. H : on line d A’ B C (1 / 2)

============================

1 / 2 * S A’ A C + (1 - 1 / 2) * S A’ A A +

(1 / 2 * S B A’ C + (1 - 1 / 2) * S B A’ A) = 0

basic_simpl. H : on line d A’ B C (1 / 2)

============================

1 / 2 * S A’ A C + (1 / 2 * S B A’ C + 1 / 2 * S B A’ A) = 0

eliminate A’. ============================

1 / 2 * (1 / 2 * S A C C + (1 - 1 / 2) * S A C B) +

(1 / 2 * (1 / 2 * S C B C + (1 - 1 / 2) * S C B B) +

1 / 2 * (1 / 2 * S A B C + (1 - 1 / 2) * S A B B)) = 0

basic_simpl. ============================

1 / 2 * (1 / 2 * S A C B) + 1 / 2 * (1 / 2 * S A B C) = 0

uniformize. ============================

1 / 2 * (1 / 2 * S A C B) + 1 / 2 * (1 / 2 * - S A C B) = 0

field_and_conclude. Proof completed.

3.2.4 Prover Output

The main comparative feature of the implementation inCoqis that it produces formal proofs.
It was built with that main motivation (unlike GCLCprover which aims at producing proofs
efficiently).

The output of the formalisation inCoq is a formal proof. More precisely, it is a term of
the calculus of inductive constructions which records all the details of the proof. The files
containing the proof terms have size about 50KB per example.

These formal proofs are not readable, hence to have a readable proof we also output a
human readable version of the proofs (using the print statement provided byLtac) in a textual
format in the console. For instance, for the example given above, the following output is
generated:

Area method:

initialisation...

elimination...

elimination of point : B’

we need to show that:

(1 / 2 * S A’ A C = 1 / 2 * S A’ B C + 1 / 2 * S A’ B A)

elimination of point : A’

we need to show that:

(1 / 2 * (1 / 2 * S A C B) = 1 / 2 * (1 / 2 * S B A C))

uniformize areas...

simplification...

before field...

3.2.5 Benefits of the Formalisation

Formalising a decision procedure within a proof assistant has not only the advantage of
simplifying the tedious task of (rigorously) proving geometry theorems but also allows us
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to combine the geometry proofs provided by the tactic with arbitrary complicated proofs
developed interactively using the full strength of the underlying logic of the theorem prover.
For instance, theorems involving induction over the numberof points can be formalised in
Coq. This approach has also the advantage of providing a higher level of reliability than
ad hoctheorem provers, because the proofs generated by tactics are double checked by the
Coq internal proof-checker (theCoqsystem as a whole and its kernel). Namely, since it is
possible thatCoq itself contains a bug, theCoqsystem is, to reduce this risk, built using de
Bruijn’s principle: only a small part of the system called thekernelis trusted. All the proofs
generated are checked by the kernel. If there is a bug outsidethe kernel, the system can fail,
but it guarantees the soundness (i.e., it does not allow proving an invalid statement).

During formalisation of the area method, we found two potential sources of incorrect-
ness.

First, during proving, we discovered one mistake in the original descriptions [8]: in
lemma EL12 the factor 2 beforePWUV was missing.

Second, when proving the invariant that elimination lemmastransform always well de-
fined geometric quantities into an expression involving only well defined geometric quanti-
ties, we noticed that some elimination lemmas require a non degeneracy condition. Let us
consider Lemma EL3: ifY is introduced by (PRATIO Y R P Q r):

AY

CD
=











AR
PQ

+r

CD
PQ

if A is onRY

SAPRQ
SCPDQ

otherwise

If A=Y, it may be the case thatCD 6‖ PQ. This demonstrates that the lemma is provable
only if A 6= Y and otherwise the ratioCD

PQ
is not well defined. Hence, during proofs it is

necessary to distinguish the two cases (A=Y andA 6=Y) as explained in Section 3.2.3 or to
generate an additional ndg (A 6=Y) as explained in Section 3.1.3.

3.2.6 Integration in GeoProof

Similarly to GCLC, the formalisation of the area method inCoq comes with a dynamic
geometry tool [45]. The software developed,GeoProof combines three tools: a dynamic
geometry tool to explore and invent conjectures, an automatic theorem prover to check facts,
and an interactive proof system (Coq) to mechanically check proofs built interactively by the
user.

3.3 Other Implementations of the Area Method

Although it is very well-known and widely credited as one of the most efficient method
for proving geometry theorems that produce readable proofs(at least in principle), there
are just a very few implementations of the area method. Actually, the situation is similar
with other proving methods for geometry — to our knowledge, there are only around a
dozen implementations in total of other most efficient proving methods (Wu’s method, the
Gröbner bases method adapted to geometry theorem proving, thefull angle method [12], and
the deductive database method [13]), counting versions employed within different systems.
One of the reasons for this is probably the fact that these methods, while having simple
basic ideas, are all still very complex and require many details to be filled when making
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a real implementation. Another reason is that these methodsstill don’t have many real-
world applications (apart from applications in education). Having the area method fully
formalised (as described in this paper) could help finding new applications, for instance, in
formalisation projects such as Flyspeck [25].

In addition to the two implementations of the area method already described, we are
aware of two other implementations: one used within a familyof tools developed by the
authors of the method and their collaborators, and one developed within the wider system
Theorema.

3.3.1 Euclid and Geometry Expert

Euclid is a theorem prover based on the area method, developed in 1993 by the authors
of the method — Shang Ching Chou, Xiao Shan Gao, and Jing-Zhong Zhang [8]. It was
implemented inCommon Lispand was accompanied by a list of 400 proved theorems.

Geometry Expert19 (GEX) is a dynamic geometry tool focused on automated theorem
proving and it implements Wu’s, Gröbner basis, vector, full-angle, and the area methods [3].
GEXwas implemented in 1998 by Xiao Shan Gao.

MMP/Geometer20 is a new, Chinese, version ofGEX. The tool has been developed inVi-
sual Csince 2002 by Xiao-Shan Gao and Qiang Lin. It automates geometry diagram gener-
ation, geometry theorem proving, and geometry theorem discovering [19]. MMP/Geometer
implements Wu’s method, the area method, and the geometry deductive database method.
Conjectures are given in a restricted pseudo-natural language or in a point-and-click manner.

Java Geometry Expert21 (JGEX) is a new, Java version ofGEX[65,66].JGEXhas been
developed since 2004, by Shang Ching Chou, Xiao Shan Gao, andZheng Ye.JGEXcom-
bines dynamic geometry, automated geometry theorem proving, and, as its most distinctive
part, visual dynamic presentation of proofs. It provides a series of visual effects for pre-
sentation of proofs. The proofs can be visualised either manually or automatically. Within
the program distribution, there are more than six hundred examples of proofs.JGEXimple-
ments the following methods for geometry theorem proving: Wu’s method, the Gröebner
basis method, the full-angle method, the deductive database method. In the latest version
(0.80, from May 2009), the area method and thetraditional methodare still under develop-
ment.

The systems from theGEX family are publicly available, but they are not open-source
and are not accompanied by technical reports with implementation details, so one cannot
reconstruct how some parts of the proving methods are implemented. Available research
papers describing these tools describe mainly only the high-level ideas and main required
lemmas, but for instance, descriptions of the simplification phase and dealing with case splits
are not available.

3.3.2 Theorema

Theorema22 is a general mathematical tool with a uniform framework for computing, prob-
lem solving, and theorem proving [2].Theoremais implemented inMathematica. It has

19 http://www.mmrc.iss.ac.cn/gex/
20 http://www.mmrc.iss.ac.cn/mmsoft/
21 http://www.jgex.net/
22 http://www.theorema.org/
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been developed since 1996 by Bruno Buchberger and a large team of his collaborators.The-
oremahas support for several methods for automated theorem proving, including methods
for theorem proving in geometry. The geometry provers are designed for constructive ge-
ometry problems and there is support for Wu’s method, Gröbner bases method, and the area
method [58]. These provers were implemented by Judit Robu (the algebraic geometry theo-
rem provers use implementations of algebraic methods fromMathematicaandTheorema).

The geometry theorem provers are accompanied by visualisation tools typical for dy-
namic geometry. Numerical checks of the validity of geometry statements can also be per-
formed for specific coordinates of the points.

In addition to the basic area method, there is also a modified version that can deal not
only with conjectures in the form of equalities, but also with conjectures in the form of in-
equalities over geometric quantities. Within this method (AreaCAD), geometric expressions
are transformed by the lemmas used in the basic area method and a conjecture (equivalent
to the original one) only in terms of the free points of the construction is obtained. That
new expression (with two sides linked by one of the relations< or ≤) is tested for validity
by Collins’ algorithm for quantifier elimination in real closed fields by cylindrical algebraic
decomposition [15].

Example 3.3 Let r1 be the radius of the circumcircle of a triangle ABC, and let r2 be the
radius of the inscribed circle of the triangle. Then it holdsthat r21 ≥ 4r2

2 and this can be
proved by AreaCAD23.

A

B C

S
O

r1

r2

3.4 Applications

As other geometry theorem provers, the area method can have different applications in edu-
cation, mathematical software, computer-aided design, computer graphics, computer vision,
robotics, etc. [7], but also in formalisation projects suchas Flyspeck which involves a lot of
geometric reasoning [25]. In this section a few existing, rather straightforward applications,
of the method are described.

23 The statement can not be stated asr1 ≥ 2r2 because, using the geometric quantities of the area method,
only the square of an oriented distance can be expressed.
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3.4.1 GeoThms

GeoThms24 is a web-based framework for exploring geometrical knowledge that integrates
dynamic geometry tools, automatic theorem provers, and a repository of geometric con-
structions, figures and proofs [53,55]. The GeoThms users can easily use/browse through
existing geometrical content and build new contents.

The main motivation is to build and maintain a publicly accessible and widely used
Internet based framework for constructive geometry. It canbe used for teaching and studying
geometry, but also as a major Internet repository for geometrical knowledge.

The dynamic geometry tools currently used within GeoThms are GCLC [29] and Eu-
kleides25 [57], two widely used dynamic geometry tools. The automatedtheorem provers
used are the two theorem provers described in sections 3.1 and 3.2, both based on the area
method, and two theorem provers based on algebraic methods [51].

GeoThms provides a web workbench that tightly integrates the mentioned tools into a
single framework for constructive geometry.

The current collection (June 2010) of 176 problems was builtusing the examples in [47,
51], and also from [6,9,11,12]. From those problems, 111 arein the realm of the area
method, 60 of them where coded in GCLC input format and the area method prover from
GCLC was capable of proving successfully 56 of them within 600s of CPU time, in 4 other
problems the prover was stopped before reaching its goal. The average CPU time was 3.5s,
with a maximum of 69.98s and a minimum of less them 0.001s. TheCoqbased prover was
capable of proving successfully 66 problems (coded inCoq format), under the time limit of
600s, in 6 other problems the prover was unable to complete the proof. The average CPU
time was 18.23s, with a maximum of 213.71s and a minimum of 0.73s. On the set of prob-
lems in which both implementations where tested the GCLCprover was significantly more
efficient than theCoqbased prover.26

24 http://hilbert.mat.uc.pt/GeoThms
25 http://www.eukleides.org/
26 All the CPU times where taken in a PentiumR©4 CPU 3.00GHz, 2GB RAM, GNU/Linux
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A more extensive set of problems should be built to have a better understanding of the
capabilities of both implementations, this is being done within the projects GeoThms and
TGTP.27

3.4.2 Automatic Verification of Regular Constructions

Some geometry tools (e.g.,Eukleides, GCLC) have a dual view of a given geometric con-
struction — its description in a custom formal language and avisualised version, within the
graphical interface. Other tools (e.g.,Geometer’s Sketchpad, Cabri) do not have, at least in
an explicit form, a formal language for geometric constructions and instead the user does not
describe a construction in abstract terms but “draws” it, using a pre-defined set of geometry
operations. Generally, there are three types of construction errors:

– syntactic errors — only applicable for geometry tools with formal languages and this
type of error is easily detected by the underlying processorand easily correctable by the
user. For the other family of geometry tools this type of error doesn’t occur due to a
controlled environment where only syntactically correct actions are allowed.

– semantic errors —situations when, for a concrete set of geometrical objects (usually
given in Cartesian plane), a construction step is not possible, for instance, two identical
points do not determine a line. Such an error will be dealt by most (if not all) geometry
tools for a given fixed set of points. However, that error is detected by an argument
relevant only for the given instance of the construction andthe question whether the
construction step is always impossible or it is not possibleonly in the given special case
is left open.

– deductive errors —when a construction step is geometrically unsound, e.g., there is
never an intersection of two parallel lines in Euclidean geometry. A formal argument
that a construction step is always impossible can only be provided by geometry tools
that incorporate geometry theorem provers.

GCLC has a built-in mechanism (using GCLCprover) for checking if a construction step
is illegal, i.e., if it is always impossible [30].

Example 3.4 Example 85 from the bookMechanical Geometry Theorem Proving[5] will
be used to illustrate the mechanism for automatic verification of regular constructions built
into GCLC. Using GCLC, the illustration given in Figure 3.3 can be generated.

If the code contains the intersection of lines AD and MN, GCLCwill report that such
intersection cannot be determined (using floating-point numbers and the concrete set, given
by the user, of the free points in the Cartesian plane). Further, it will invoke the built-in
theorem prover and prove the conjecture that the two lines ADand MN are parallel (hence,
for any choice of free points, the intersection of lines AD and MN cannot be determined).

As far as we are aware of, the system for automateddeductivetesting whether a construc-
tion is illegal, an important feature that enhances the didactic nature of dynamic geometry
tools, that is built into GCLC is the only such system. A similar mechanism is available in
JGEX: when a user tries to perform an illegal construction step, the tool may report that it
is not possible to perform the step, but it does not provide a proof for that argument. The
geometry toolCinderelladoes not allow illegal construction steps to be performed. However
the justification is not based on deductive but on probabilistic reasoning [37].

27 http://hilbert.mat.uc.pt/TGTP/
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A

N

B

CD

PQ

Fig. 3.3 Example 85 from the bookMechanical Geometry Theorem Proving

3.4.3 Computing Geometric Expressions

Within Theorema, the area method machinery is used for computing expressions involv-
ing geometric quantities relative to a given construction.For the given expression, all con-
structed points are eliminated and the expression is simplified, similarly as in the basic
method [58].

Example 3.5 Let A, B and C be arbitrary points and let r be an arbitrary number. Let D
be the intersection of the line through B that is parallel to AC and the line through C that
is parallel to AB. Let A′ be the point that divides CD in the ratio1 : r(r − 1) and let B′

be the point that divides DA in the ratio1 : r(r − 1). Finally, let X be the intersection of
the lines AA′ and BB′. The goal is to find the ratio of the area of the triangle ABC andthe
quadrilateral ABCD.

A

B C

DB′

A′

X

The tool implemented within Theorema, based on the area method can compute that the
given ratio is equal to 1−r

4−4r+2r2 .

Notice that the basic area method canprove that the given ratio equals 1−r
4−4r+2r2 , but

computingthe given ratio (without an expected result) requires some slight modifications of
the method28.

28 This extension of the method was originally described by the authors of the method [9].
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3.4.4 Discovering Geometry Properties

Within Theorema, the area method machinery is used for exploring geometrical config-
urations and discovering geometry properties [58]. The method is based on a systematic
generation of all geometric expressions representing interesting properties relative to a con-
struction (collinear points, congruent segments, parallel and perpendicular lines, triangles
with the same area) and then analysing which of these properties might be unknown so far
i.e., not present in an available knowledge base. Starting from a knowledge base that speci-
fies some constructions and properties, a range of interesting theorems can be automatically
obtained. These obtained theorems can be added to the knowledge base and the exploration
may continue without recomputing the results already obtained. For testing generated prop-
erties, the area method is used, but other proving methods can be used as well.

4 Contributions

In this paper we gave a detailed account of the area method anddescribed all existing imple-
mentation that we are aware of and their wider contexts. Thisaccount can serve as a basis
for a straightforward implementation of the method. In addition to that, this paper brings the
following original contributions:

– We gave an axiom system that serve as a basis for the method, anextension of the axiom
system given by the authors of the method [9] (Section 2.2.2).

– We made formal proofs, within the proof assistantCoq(in a contribution accompanying
this paper), of all the lemmas needed for the correctness of the method not only for
affine geometry (already described before [43]), but also for Euclidean geometry [47].
Thanks to the formalisation, we ensured the correctness of all the lemmas required by the
method, with an exception of one lemma that, as published in the original description [9],
contained an error.

– We provided detailed traditional proofs in the Hilbert-style system (in a technical report
accompanying this paper [56]) of all the lemmas and filled-insome details missing in
the original descriptions.

– We made explicit the elimination procedure for all cases including the special cases such
as AY

CY
(Section 2.4.1).

– We made explicit dealing with the case split occurring in some of the lemmas (Sec-
tion 2.5.1).

– We made explicit the uniformization phase which consists infinding normal forms for
geometric quantities (Section 2.5.2).

– We made explicit the formulae to be used for dealing with freepoints (Section 2.5.4).
– We made an explicit description of the simplification phase (Section 2.5.3).
– We made explicit the algorithm for deciding equality between two rational expressions

in independent parameters (Section 2.5.5).
– We highlighted the fact that a special case needs to be studied when eliminatingY in AY

CD
(Section 3.2.5).

5 Conclusions

In this paper we gave a detailed description of the area method, one of the most significant
methods for automated theorem proving in geometry, introduced by Chou , Gao and Zhang
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in 1993. The method produces proofs that are often concise and human-readable, and can
efficiently prove many non-trivial theorems. The description of the method given here can
serve as a detailed tutorial on the method (first of that kind), sufficient for understanding and
implementing it in a straightforward manner.

Within this paper we also showed how the area method can be successfully integrated
with other mathematical tools.

We, the authors of the paper, independently made two of theseintegrated implemen-
tations and in this paper we presented our combined results and experiences related to the
method and its applications.

Acknowledgements We thank the anonymous referees for the very helpful comments onthe first version of
this paper.
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