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Abstract The area method for Euclidean constructive geometry wagosex by Chou,
Gao and Zhang in the early 1990’s. The method can efficiemdygomany non-trivial ge-
ometry theorems and is one of the most interesting and mosessful methods for auto-
mated theorem proving in geometry. The method producedgtioat are often very concise
and human-readable.

In this paper, we provide a first complete presentation ohtieéhod. We provide both
algorithmic and implementation details that were omittethie original presentations. We
also give a variant of Chou, Gao and Zhang'’s axiom systemedBas this axiom system,
we proved formally all the lemmas needed by the method argbitadness using th@oq
proof assistant.

To our knowledge, apart from the original implementatiorthoy authors who first pro-
posed the method, there are only three implementations.ltheugh the basic idea of the
method is simple, implementing it is a very challenging taskause of a number of details
that has to be dealt with. With the description of the methiedrgin this paper, implement-
ing the method should be still complex, but a straightfodimask. In the paper we describe
all these implementations and also some of their applicatio
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1 Introduction

There are two major families of methods in automated reasgpim geometry: algebraic
style and synthetic style methods.

Algebraic style has its roots in the work of Descartes anchi ttanslation of geo-
metric problems to algebraic problems. The automation efpgitoving process along this
line began with the quantifier elimination method of Tardd] and since then had many
improvements [15]. The characteristic set method, alsavknas Wu’s method [4,63], the
elimination method [62], the ®bner basis method [35, 36], and the Clifford algebra ap-
proach [39] are examples of practical methods based on ¢ebiaic approach. All these
methods have in common an algebraic style, unrelated tdtitnaal, synthetic geometry
methods, and they do not provide human-readable proofselyathey deal with polyno-
mials that are often extremely complex for a human to undedstand also with no direct
link to the geometrical contents.

The second approach to the automated theorem proving inejepfocuses on syn-
thetic proofs, with an attempt to automate the traditiomaviing methods. Many of these
methods add auxiliary elements to the geometric configuratonsidered, so that a certain
postulates could apply. This usually leads to a combinatesiplosion of the search space.
The challenge is to control the combinatorial explosion tmdevelop suitable heuristics
in order to avoid unnecessary construction steps. Exangblegnthetic proof methods in-
clude approaches by Gelertner [20], Nevis [48], Elcock [GEeno et al. [23], Coelho and
Pereira [14], Chou, Gao, and Zhang [8].

In this paper we focus on the area method, an efficient coatetiafree method for
a fragment of Euclidean geometry, developed by Chou, Gab,Ziwang [8,9,11] that is
somewhere between the two above styles. This method enatdetd implement provers
capable of proving many complex geometry theorems. The adehisometimes credited
(e.g., by its authors) to produce traditional, human-rbseproofs. The generated proofs are
indeed often concise, consisting of steps that are direeléted to the geometrical contents
involved and hence can be readable and easily understoodviatreematician. However,
since the proofs are formulated in terms of arithmetic esgigns, they can also significantly
differ from traditional, Hilbert-style, synthetic proofgven in textbooks. Also, proofs may
involve huge expressions, hardly readable, despite thetliaar atomic expressions have
clear and intuitive geometrical meaning.

The main idea of the area method is to express the hypothésetheorem using a
set of starting (“free”) points and a set of constructiveestaents each of them introducing
a new point, and to express the conclusion by an equality dmtwolynomials in some
geometric quantities (without considering Cartesian doates). The proof is developed
by eliminating, in reverse order, the points introducedbefusing for that purpose a set
of appropriate lemmas. After eliminating all the introddgmints, the goal equality of the
conjecture collapses to an equality between two rationptessions involving only free
points. This equation can be further simplified to involvédyandependent variables. If the
expressions on the two sides are equal, the conjecture &oeettm, otherwise it is not. All
proof steps generated by the area method are expressexhgdkapplications of high-level
geometry lemmas and expression simplifications.

Although the basic idea of the method is simple, implemeitiis a very challenging
task because of a number of details that has to be dealt vatbuiTknowledge, apart from
the original implementation by the authors who first progoges area method, there are
only three other implementations. These three implemiemstvere made independently
and in different contexts:
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— within a tool for storing and exploring mathematical knodde (Theorema [2]) — im-
plemented by Judit Robu [58].

— within a generic proof assistant (Coq [61]) — implementedlblyen Narboux [43];

— within a dynamic geometry tool (GCLC [29]) — implemented neérag Jardic and
Pedro Quaresma [33];

The implementations of the method can efficiently find praiffa range of non-trivial
theorems, including theorems due to Ceva, Menelaus, GRappus, and Thales.

In this paper, we present an in-depth description of the ruethod covering all relevant
definitions and lemmas. We also provide some of the impleatient details, which are not
given or not clearly stated in the original presentations.fdllow the original exposition,
but in a reorganised, more methodological form. This desion of the area method should
be sufficient for a complete understanding of the method, fananaking a new imple-
mentation a straightforward task. This paper also sumesmosir results, experiences, and
descriptions of our software systems related to the arehod¢80, 33,43,45,52,54].

In this paper we consider only the basic variant of the areaodefor Euclidean geom-
etry, although there are other variants. Additional teghas can also be used to produce
shorter proofs and slightly extend the basic domain of théhote[9]. However, these tech-
niques are applicable only in special cases and not in amifeay, in contrast to the basic
method. It is also possible to extend the area method to déalgoals in the form of in-
equalities (of the fornk. < Ror L < R). In that case, the inequality can be decided using an
CAD algorithm or a heuristic like the sum of squares methdtere are also variants of the
area method developed for solid Euclidean geometry [10Jfantyperbolic plane geom-
etry [64]. Substantially, the main idea of these varianthésame as in the basic method
and this demonstrates that the approach has a wide domaiantaof the method can be
implemented in the same way described in this paper.

Overview of the papeflhe paper is organised as follows: first, in Section 2, wearpl
the area method in details. In Section 3, we describe allxtstieg implementations of the
method and some of their applications. In Section 4 we surnsaur contributions and we
draw final conclusions in Section 5.

2 The Area Method

The area method is a decision procedure for a fragment ofdaaai plane geometry. The
method deals with problems stated in terms of sequence®offgpgeometric construction
steps. We begin introducing the method by way of example.

In the rest of the paper, capital letters will denote pointshie plane and\ABC will
denote the triangle with vertices B, andC.

2.1 Introductory Example

The following simple example briefly illustrates some kestteres of the area method.

Example 2.1 (Ceva’s Theorem)Let AABC be a triangle and P be an arbitrary point in
the plane. Let D be the intersection of AP and BC, E be thesetgion of BP and AC, and
F the intersection of CP and AB. Then:
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This result can be stated and proved, within the area metitidg.

The Constructiomhe pointsA, B, C, andP arefree points points not defined by construc-
tion steps. The poir is the intersection of the line determined by the poitsndP and
of the line determined by the poinBsandC. The pointsE andF are constructed in a similar
fashion.

For this problem, an initiahon-degeneracy conditida that it holdsF £ B, D # C, and
E # A. Notice also that the poirR is not completely arbitrary point in the plane, since it
should not belong to the three lines parallel to the sideb@triangle and passing through
the opposite vertices (Figure 2.1).

Fig. 2.1 lllustration for Ceva’'s theorem

Stating the Conjectur@®ne of the key problems in automated theorem proving in gégme
is the control of the combinatorial explosion that arisesrfthe number of similar, but still
different, cases that have to be analysed. For instancen ginree point#\, B, andC, how
many triangles do they define? One can argue that the answeejdut from a syntactic
point of view, AABC is not equal toAACB. For reducing such combinatorial explosion,
but also for ensuring rigorous reasoning, one has to deal aviangement relations, such
ason the same side of a linéwo triangles have the same orientatjcgtc. Note that, in
Euclidean geometry, positive and negative orientatiorjuetadwo names used to distinguish
between the two orientations and one can select any tricgnglee plane and proclaim
that it has the orientation that will be callg@dsitive(and it is similar with orientation of
segments on a line). In other words, in Euclidean geomeynittion of orientation is
relative rather then absolute, and one can prove that gjtedras positive orientation, only
if positive (and negative) orientation was already definedsome triangle in the same
plane. In the Cartesian model of Euclidean geometry, theotiemtations are distinguished
as clockwiseand counterclockwiserientations. These two names should not be used for
Euclidean geometry, because they cannot be defined thefertuhrately, these terms are
widely used in geometrical texts, including in the desavipof the area method [67].
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For stating and proving conjectures, the area method uses @ specificgeometric
guantitiesthat enable treating arrangement relations. Some of them ar

— ratio of parallel directed segmentslenotedAB/CD. If the pointsA, B, C, andD are
collinear,AB/CD is the ratio between lengths of directed segmé®saandCD. If the
pointsA, B, C, andD are not collinear, and it hold&B||CD, there is a parallelogram

ABPQsuch thaf, Q, C, andD are collinear and theg% = % .
— signed aredor a triangleABC, denotedSagc is the area of the triangldBC, negated if

ABC has the negative orientation.

— Pythagoras differenck denotedPagc, for the pointsA, B, C, defined asPagc = AB +
=2 =2
CB —AC".

These three geometric quantities allow expressing (in fufregualities) geometry prop-
erties such as collinearity of three points, parallelisnivas lines, equality of two points,
perpendicularity of two lines, etc. (see section 2.2.1Yhimexample, the conjecture is ex-
pressed using ratios of parallel directed segments.

Proof The proof of a conjecture is based on eliminating all the toged points, in reverse
order, using for that purpose the properties of the geomatrantities, until an equality in
only the free points is reached. If the equality is provatiien the original conjecture is a
theorem as well. For the given example, a proof can be asifsilo

It can be proved thaE = % By analogyS2 = fgi’; andE = gi—;g Therefore:

_ Sapc
Sgcp DC EA

_ Sapc Seea CE i i alimi
= Sk Seh & the pointD is eliminated

— Sapc Seea Sces the pointE is eliminated
Secp Scap Sasp

=1

&
I3

the pointF is eliminated

@im
ik
S
TR

Q.E.D.

The example illustrates how to express a problem using trengieometric quantities
and how to prove it, and moreover, how to give a proof that iscis® and very easy to
understand.

The complete proof procedure will be given in Section 2.50Bethat, the underlying
axiom system will be introduced.

2.2 Axiomatic Grounds for the Area Method

There is a number of axiom systems for Euclidean geometrglidsi system [26], partly
naive from today’s point of view, was used for centuries.He early twentieth century,
Hilbert provided a more rigorous axiomatisation [27], orfethee landmarks for modern
mathematics, but still not up to modern standards [16,42the mid-twentieth century,
Tarski presented a new axiomatisation for elementary gagriwith a limited support for

1 ThePythagoras differencis a generalisation of the Pythagoras equality regardiagtitee sides of a
right triangle, to an expression applicable to any triarfyiea triangleABC with the right angle aB, it holds
thatPABc = 0)
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property in terms of geometric quantities

pointsA andB are identical Pprsa=0

pointsA, B, C are collinear Sppc=0

ABis perpendicular t&€ D Pasa# OAPcpec # OAPacp = Pacbd

ABis parallel toCD Pasa# OAPcpc # OASacp = Seep

O'is the midpoint ofAB Saso=0APaga#0A 58 =3

AB has the same length &D Pasa= Pcpc

pointsA, B, C, D are harmonic Sasc=0 ASap=0 APsce# 0 APgps #0 A é:g = %

angleABChas the same measureSF  Paga# 0APaca# 0APace# OAPpep # OAPprp # OA
Pere # OA Spsc* Poer = Sper - Pasc
AandB belong to the same circle a8D  Sacp # 0 ASgep # 0 A Scap - Peep = Scep* Pcab

Table 2.1 Expressing geometry predicates in terms of the three geonoefaiatities.

continuity features), along with a decision procedure Fattheory [60]. Although there
are other variations of these systems [31,44], these thieetha most influential and most
popular axiomatic systems for geometry.

Modern courses on classical Euclidean geometry are mast bised on Hilbert’s ax-
ioms. In Hilbert-style geometry, the primitive (not definaibjects arepoint, line, plane
The primitive (not defined) predicates are those of congreemnd order (with addition of
equality and inciden. Properties of the primitive objects and predicates am®duced
by five groups of axioms, such as: “For two poiAtSB there exists a lina such that bott
andB are incident with it".

In the following text we briefly discuss how axiomatic grogncan be built for the
fragment of geometry treated by the area method.

2.2.1 A Hilbert Style Axiomatisation

The geometric quantities used within the area method (mead in Section 2.1) can be
defined in Hilbert style geometry, but they also require m€f the theory of fields. The
notions of the ratio of parallel directed segments and ofstgeed area involve the notion
of orientation of segments on a line and the notion of origoriaof triangles in a plane
(discussed in section 2.1).

Using geometric quantities, it is possible to express aeafgeometry predicates as
shown in Table 2.1.

The given correspondences can be proved as theorems oftdilgeometry. For in-
stance, one direction of the property about angle congrieana be proved as follows.
SinceA, B, andC define an angle, they are different by definition (i7eaga # 0, Paca # 0,
Psce # 0), and the same holds for the poillisE, F. If the angleABCis a right angle, then
Pasc = Pper = 0 and trivially Sasc - Poer = Sper - Pasc; Otherwise, by the cosine rule,
Sasc/Pasc = (LAB-BC-sin(ABC))/(AB’ +CB — (AB’ + CB’ — 2AB- BCcogABC))) =
sin(ABC)/(4cogABC)) = tan(ABC) /4; hence, if the anglBEF is congruent tABC, then
Saec/Pasc = tan(ABC) /4 = Sper/Pper and, furthetSagc - Poer = Sper - Pasc.

Proofs generated by the area method use a set of specific elfs@a Section 2.4).
These lemmas can be proved within Hilbert's geometry (ivéhin its fragment for plane
geometry), but the full, formal proofs would be very long amoluld involve complex no-
tions like orientation and area of a triangle. That is whisuitable to have an alternative,

2 See von Plato’s discussion about incidence in Hilbert'swetoy [50].
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higher-level axiomatisation, suitable for the area metl@dou, Gao and Zhang [8] pro-
posed such a system for affine geometry, and in the next segdgropose a variant of this
system.

2.2.2 A New Axiom System for the Area Method

The axiom system used by Chou, Gao and Zhang [8,9] is a seahjtEnaxiom system
with (only) points as primitive objects (lines are not priiveé objects as in Hilbert's axiom
system). The axiom system contains the axioms of field, sgythem uses the concept of
numbers, but it is still coordinate free. The field is not ased to be ordered, hence the
axiom system has the property of representing an unorde@aetry. This means that, for
instance, one cannot express the concept of a point beimgebrttwo points (unlike in
Hilbert’s system).

In the following, we present our special-purpose axiomeaystor Euclidean plane ge-
ometry (within first order logic with equality), a modifiedrggon of the axiomatic system
of Chou, Gao and Zhang.

In contrast to Hilbert’s system, in our axiom system thergi$$ one primitive type of
geometrical objects: points. Variables can also rangeafietd (F, +, -,0,1). F is any field
of characteristic different from 2 The axioms of the theory of fields are standard and hence
omitted.

There is one primitive binary function symbat)(and one ternary function symbols
(S.) from points toF. The first depicts the signed distance between two poirgssélcond
represents the signed area of a triangle. All axioms giverable 2.2 are implicitly univer-
sally quantified. To improve readability (of the last thre@as), the following shorthands
are used: Y,

PaBc AB +BC —AC2
AB| CD Sach = Seeb
AB 1L CD = "Pacp=PascD

The following shorthands are also used within the methodébier readability:

SacD = Saec+ SacD
Pascp = Pasb — Pcebd

Definition 2.1 (Geometry Quantities) Geometry quantitieare expressions of the forgtg,
Spec, Sased, Pasc, PascD:

Relationship with the Hilbert style geometrijote that in the Hilbert style approach, pred-
icates—, S, andP__ and are all defined (see Section 2.2.1), while in this approacS. .

are primitive predicates ang __ is a defined predicate. In both cases, ratio of parallel di-
rected segments is defined using the notions of the theorgld&fiProvable properties of
Hilbert’s geometry shown in Table 2.1, can be used as defirgt{for notions of parallel
lines, perpendicular lines, etc) in the area method th&drgnks to all these definitions, all
well-formed formulae of the theory of the area method are waisll-formed formulae of the
Hilbert style geometry. Moreover, all presented axiomshefarea method can be proved in

3 The fact that the characteristic Bfis different from 2 is used to simplify the axiom system. Indeed
if 0 # 2 sinceVABC, Sagc = —Sgac (by axiom 3) thenvAC, Saac = —Saac and hence&/AC, Saac = 0, so
we can omit the axionSaac = 0 which appears in the system proposed by Chou et al. In additiis
assumption allows, for instance, construction of the midpising the construction axiom with= %) ofa
segment without explicitly stating the assumptiog Q.
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. AB= 0 if and only if the pointsA andB are identical

Sasc = Scas

Sppc=~-Seac

If Sagc = 0 thenAB-+ BC = AC (Chasles’s axiom)

. There are point8, B, C such thatSagc # 0 (dimension; not all points are collinear)

Sasc = Spec + Sapc + Saep (dimension; all points are in the same plane)

. For each elementof F, there exists a poirR?, such thatSagp = 0 andAP = rAB (construction of a point
on the line)

. It A#B,Sapp= 0,AP =rAB,Spgp = 0 andAP’ = rAB, thenP = P’ (unicity)

9. IfPQJCD andz:g =1thenDQ || PC (parallelogram)

10. If Spac # 0 andSpgc =0 thenﬁ;g = % (proportions)

NoorwNE

[ee]

11. IfC# D andAB_LCDandEF L CDthenAB| EF
12. IfA#BandAB_L CDandAB| EF thenEF L CD

13. If FA L BCandSggc = 0 then 425 = AE’BC? (area of a triangle)

Table 2.2 The axiom system

the Hilbert style geometry as theorefiBecause of that, each conjecture that can be proved
by the axioms for the area method, is also a theorem of Hitbgeometry (assuming the
same inference system).

Relationship with the axiom system of Chou, Gao, and Zh&hg. axiom system is an ex-
tended and modified version of the original system by Chow, @ad Zhang. While their
axiom system deals with affine geometry only (and does naidnice the notion of Pythago-
ras difference), our system contains axioms about Pytlaagdifference (axioms 11, 12,
and 13) and, thanks to that, deals with Euclidean geometmp@red to the original ver-
sion, ours has also the advantage of being more precise gadised. The axiom system
we propose differs from the axiom system of Chou, Gao and @lrathe following ways
too:

1. Our system does not use collinearity as a primitive nadiothinstead, collinearity is de-
fined by the signed area. Chou, Gao and Zhang's system hasskitroducing prop-
erties of collinearity, and these axioms are then used fovipg that three points are
collinear if and only ifSagc = 0 [9].

2. While Chou, Gao and Zhang's axiom system restricts tosaif directed parallel seg-
ments% where the lineAB andCD are parallel, we skip this syntactical restriction
and can use ratios for arbitrary points. The consistencyeakiom system is preserved
because the concept of oriented distance can be interpretbe standard Cartesian
model. The area method requires explicitly that for evetipraf directed segmen%%,
AB is parallel toCD. Therefore, the area method is not a decision proceduréhior t
theory, as it can not prove or disprove all conjectures dtatehe introduced language
because the method can not deal with ratios of the fé%vif ABJ CD (however, itis a
decision procedure for the set of formulae from the restdatersion of the language).

Finally, using our axiom system — more suitable for that taskve formally verified
(within the Coq proof assistant [61]) all the properties of the geometriardities required

4 We don’t have formal proofs for these conjectures as they evimvblve formalisation of very complex
notions like orientation and area of a triangle, which i lséyond reach for current formalisation of Hilbert's
geometry.
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by the area method, demonstrating the correctness of ttensysd eliminating all concerns
about provability of the lemmas [47].

2.3 Geometric Constructions

The area method is used for proving constructive geometnjectures: statements about
properties of objects constructed by some fixed set of el@angnonstructions. In this sec-
tion we first describe the set of available constructionstam then the set of conjectures
that can be expressed.

2.3.1 Elementary Construction Steps

Constructions covered by the area method are closely celatg still different, from con-
structions by ruler and compass. These are the elementasyraotions by ruler and com-
pass:

— construction of an arbitrary point;

— construction of an arbitrary line;

— construction (by ruler) of a line such that two given poingsdng to it;

— construction (by compass) of a circle such that its centoaésgiven point and such that
the second given point belongs to it;

— construction of a point such that it is the intersection af times (if such a point exists);

— construction of the intersections of a given line and a giietie (if such points exists).

— construction of the intersections of two given circles (i€l points exists).

The area method cannot deal with all geometry theoremsvimgthe above construc-
tions. It does not support construction of an arbitrary limed it supports intersections of
two circles and intersections of a line and a circle only imated way.

Instead of support for intersections of two circles or a lara a circle (critical for
describing many geometry theorems), there are new, speoiffistruction steps. All con-
struction steps supported by the area method are exprestadis of the involved points.
Therefore, only lines and circles determined by specifiofzotan be used (rather than ar-
bitrarily chosen lines and circles) and the key constructiteps are those introducing new
points. For a construction step to be well-defined, certaimditions may be required. These
conditions are calledon-degeneracy conditiorfedg-conditions).

In the following text, (LNE U V) will denote a line such that the poiritsandV belong
to it, and (QrcLE O U) will denote a circle such that its centre is point O and sheh the
point U belongs to it.

Some of the construction steps are formulated using the fieddl (F, +,-,0,1), em-
ployed by the used axiom system.

Given below is the list of elementary construction stepsisdrea method, along with
the corresponding ndg-conditions. Free points are intedwnly by ECS1 and, if is a
variable, by ECS4 and by ECS5.

5 Elementary construction steps used by the area method doantitaisoncept of line and plane explicitly.
This is convenient from the point of view of formalisation emgtomation. Indeed, in an axiom system based
only on the concept of points (as in Tarski’s axiom systen})[@e dimension implied can be easily changed
by adding or removing some appropriate axioms (stated in tiggnatisignature). On the other hand, in an
axiom system based on the concepts of points and lines, sudiikeert's axiom system, in order to extend
the system to the third dimension ones needs both to updateasdames, to introduce some new axioms and
to change the signature of the thedsy introducing the sort of planes.
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ECS1 construction of an arbitrary point U; this construttitep is denoted by (NT U).
ndg-condition: —
ECS2 construction of a point Y such that it is the intersectibtwo lines (ULNE U V) and
(LINE P Q); this construction step is denoted butERY U V P Q.
ndg-conditionUV }f PQ; U #V; P #£Q.
A formula that corresponds to this construction steflisz V AP £ QAUV Jf PQA
Suvy = 0ASpgy =0.
ECS3 construction of a poiv such that it is the foot from a given poiRtto (LINE U V);
this construction step is denoted byd®TY P U V).
ndg-conditionU #V
A formula that corresponds to this construction steplist V APY L UV A Syyy = 0.
ECS4 construction of a point on the line passing through a poit and is parallel to
(LINE U V), such thatWY = rUV, wherer is an element oF, a rational expression in
geometric quantities, or a variable; this constructiop sedenoted by (RATIOY W U
V).
ndg-conditionU # V; if r is a rational expression in the geometric quantities, the de
nominator ofr should not be zero. o
A formula that corresponds to this construction steflist V AWY || UV A ‘L’J":\}( =T.
ECS5 construction of a poiivt on the line passing through a poldtand perpendicular to
(LINE U V), such that% =r, wherer is a rational number, a rational expression in
geometric quantities, or a variable; this constructiop &elenoted by (RaTio Y U V
r.
ndg-conditionU # V; if r is a rational expression in geometric quantities then the de
nominator ofr should not be zero.
A formula that corresponds to this construction steplist V AUY LUV A % =T.

The above set of construction steps is sufficient for exprgsaany constructions based
on ruler and compass, but not all of them. For instance, aitranp line cannot be con-
structed by the above construction steps. Still, one castoget two arbitrary points and
then (implicitly) the line going through these points.

Also, intersections of two circles and intersections oha knd a circle are not supported
in a general case. However, it is still possible to constitersections of two circles and
intersections of a line and a circle in some special casesXample:

— construction of a poinY such that it is the intersection (other than pdihtof a line
(LINE U V) and a circle (@RcLE O U) can be represented as a sequence of two con-
struction steps: (BOTN O U V), (PRATIOY N N U-1).

— construction of a point Y such that it is the intersectiorhéstthan poin®) of a circle
(CIRCLE O1 P) and a circle (@RcLE O2 P) can be represented as a sequence of two
construction steps: O0TN P O1 O2), (PRATIOY N N P-1).

In addition, many other constructions (expressed in terfe®ostructions by ruler and
compass) can be performed by the elementary constructiothe @area method. Some of
them are:

— construction of a line such that a given pdifitbelongs to it and it is parallel to a line
(LINE U V); such line is determined by the poil¢ and N, whereN is obtained by
(PRATIONW U V1).

— construction of a line such that a given pdiitbelongs to it and it is perpendicular to a
line (LINE U V); if W, U,V are collinear, then such line is determined by the pdivits
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andN, whereN is obtained by (RATIO N W U 1), otherwise, such line is determined
by the pointaV andN, whereN is obtained by (BOTN W U V).

— construction of a perpendicular bisector of a segment witlpeintsU andV; such line
is determined by the point$ andM, where these points are obtained bgr&f10 M U
UV 1/2), (TRATION M U 1).

Also, it is possible to construct an arbitrary pothon a line (LNE U V), by (PRATIO Y
U U V r) wherer is an indeterminate, or on a circle f&LE O P), by (POINT Q), (FoOT
N OPQ, (PRATIOY N N P-1). There can be also used some additional constructips ste
(with corresponding elimination lemmas) that can help poidg shorted proofs in some
cases [8] but we will not describe them here.

Within a wider system (e.g., within a dynamic geometry tpaljicher set of construc-
tion steps can be used for describing geometry conjectwrésng as all of them can be
represented by the elementary construction steps of tlenaeéhod.

As said, the set of elementary construction steps in the meghod cannot cover all
constructions based on ruler and compass. On the other teme ,are also some construc-
tions that can be performed by the above construction stegh¢heat cannot be performed
by ruler and compass. For instanceyi® € F then, given two distinct pointd andB, one
can construct a third poifit such thaiAC = v/2AB, since one can use this number (whereas
it is not possible using ruler and compass).

Example 2.2 The construction given in Example 2.1 can be representedring of the
given construction steps as follows:
A,B,C,P are free points (ECS1)

(INTERDAPBQ (ECS2)
(INTEREBPAQ (ECS2)
(INTERFCPAB (ECS2)

2.3.2 Constructive Geometry Statements
In the area method, geometry statements have a specific form.

Definition 2.2 (Constructive Geometry Statement)A constructive geometry statemeist
alist S= (Cy,Cy,...,Cn, G) where G, for 1 <i < m, are elementary construction steps, and
the conclusion of the statement, G is of the form=EE,, where i and E are polynomials

in geometric quantities of the points introduced by thes@pln each of ¢, the points used
in the construction steps must be already introduced by tbegaling construction steps.

The class of all constructive geometry statements is ddrint€.

Note that, in its basic form, the area method does not dedal egihclusion statements
in the form of inequalities (for another variants of the nuettsee Section 2.5.8 and Sec-
tion 3.3.2).

For a statemers= (C1,C;, ...,Cm, (E1 = E2)) from C, the ndg-condition is the set of
the ndg-conditions of the stef, plus the conditionsl; that the denominators appearing
in E; andE; are not equal to zero, and the conditignshat lines appearing in ratios of
segments irfE; andE; are parallel: for each ratio of the for% appearing ire; andEy,
there is a ndg-conditioAB || CD. The logical meaning of a statement is hence:
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CLAC2A ... ACmA

di AL AdmA
p]_/\/\ pm/\
=E=E

whereg; are the formulae characterising the construction stephki@ing their ndg-conditions).
The formula above is assumed to be universally quantified.

The area method (as described in this paper) decides whathet a conjecture of the
above form is a theorem, i.e., whether it can be derived fioenaixiom system described
in Section 2.2.2. If a conjecture is a theorem in the theorthefarea method, then it is
also a theorem of the Hilbert style geometry (as discuss&kation 2.2.2). Note that the
area method is applied for statements of the fétra- E; = Ep, while definitions of some
geometry properties may involve inequalities as well, feténce, we say thaB is parallel
to CDif Paga# O0A Pcpe # 0A Sacp = Seep- Typically, when proving properties defined
in Table 2.1, instead of provinBaga # 0A Pcpc # 0A Sacp = Secp, the method is applied
only for provingSacp = Secp, Which gives a weaker conjecture (for the special cases of
A=BandC = D). Adding A # B andC # D to the set of ndg-conditions, would ensure that
these two goals are equivalent.

Example 2.3 The statement corresponding to the theorem given in Exaghfilean be
represented as follows:

A#PAB#CAAPHBCASApD =0ASecp=0A

B#APAA£CABP)ACASerE =0ASpcE=0A

CAPAA#£BACP}ABAScpr =0ASaBr =0A

F#ABAD#CAE#AA

AF || FBABD||DCACE ||EA

_, AEBDCE _q

a7
8l
m
2l

2.4 Properties of Geometric Quantities and Elimination heas

We present some definitions and the properties of geometaiotdies, required by the area
method. We follow the material from original descriptiorfsttee method [8,9,11,67], but
in a reorganised form. The rigorous traditional proofs (favtal) in the Hilbert's style
geometry, accompanying all the results presented in tlusoseare available [56]. The
formal (machine verifiable) proofs are available a&Sa&contribution [47].

The following lemmas are implicitly universally quantifiadd it is assumed that it holds
A +#£ B for any ratio of parallel directed segments of the fc%@

Lemma2.1 PQ— _QP_QP_ _PQ
) B

Lemma 2.2 FTQ:Qif-fP:Q_

Lemma2.3 PQ AB _ 1

Lemma 2.4 Sagc = Scas = Seca= —SacB = —Ssac = —Scaa-

Lemma 2.5 Paag=0.
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Lemma 2.6 Pagc = Pcaa

Lemma 2.7 Papa= AR

2.4.1 Elimination Lemmas

An elimination lemma is a theorem that has the following jemies:

— it states an equality between a geometric quantity invghércertain constructed point
Y and an expression not involving

— this last expression is composed using only geometric diesmt

— this expression is well defined: denominators are diffefil@mh zero and ratios of seg-
ments are composed only using parallel segments.

It is required to describe elimination of points introdudgd four construction steps
(ECS2 to ECS5) from three kinds of geometric quantities.

Some elimination lemmas enable eliminating a point fromresgions only at certain
positions — usually the last position in the list of the argunts. That is why it is necessary
first to transform relevant terms of the current goal intofdren that can be dealt with by
these elimination lemmas. Moreover, some elimination lesnequire that some points are
assumed to be distinct. The first following lemma ensuresthiimassumptions can be met.

Lemma 2.8 If G is a geometric quantity involving Y, then either G is ddoaero or it can
be transformed into one of the following forms (or their sundifference), for some A, B,
C, and D that are different from Y :

AY.AY. AY. 1. . :
coiBY BV A » PaBy; Pay B Sasy

Proof: If G is a geometric quantity of arity 4Shscp Or Pascp), the first step is to trans-
form it into terms of arity 3, using the shorthands definedecti®n 2.2.2Sascp = Sasc+
Sach; Pasebd = Pasb — Peeb-

Now, all remaining geometric quantities (involviiYg can be treated.

Signed ratios:G can have one of the following forms (for sorAeB, andC different from
Y):

. =0 (by Lemma 2.2)

=0 (by Lemma 2.2)

=0 (by Lemma 2.2)

= 7% (by Lemma 2.1)
= _g (by Lemma 2.1)

_ AY
= gy (by Lemma 2.1)

=— &% (by Lemma 2.1)
(by lemmas 2.1 and 2.3)

e NS R N N N ]

(by lemmas 2.1 and 2.3)

12|~ 212~
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Signed areaG can have one of the following forms (for sorAeandB different fromY):
Syyy=0 (by Lemma 2.4)

e Sayy =0 (by Lemma 2.4)
e Syay=0 (by Lemma 2.4)
e Syya=0 (by Lemma 2.4)
e Saye= Spay (by Lemma 2.4)
o Syag= SaBy (by Lemma 2.4)
® SaBy
Pythagoras differenceG can have one of the following forms (for sorAeandB different
fromY):

e Pyyy=0 (by Lemma 2.5)

e Payy =0 (by lemmas 2.6 and 2.5)
e Pyay = Pava(by Lemma 2.7)

e Pyya= 0 (by Lemma 2.5)

e Pays

o Pyag= Psay (by Lemma 26)

® Papy

Q.E.D.

If G(Y) is one of the following geometric quantitieSagy, Sascy, Pasy, O Pascy for
pointsA, B, C different fromY, thenG(Y) is called dinear geometric quantity

The following lemmas are used for eliminationYofrom geometric quantities. Thanks
to Lemma 2.8, it is sufficient to consider only geometric diigas with only one occurrence
of Y and the C&S%. Therefore, it can be assumed tiatliffers fromA, B, C, andD in the
following lemmas (although they are provable in a generakgcanless stated otherwise).
This ensures that does not occur on the right hand sides appearing in the eliioim

lemmas.

Lemma 2.9 (EL1) IfY isintroduced b{INTERY U V P Q then (we assume thatAY):®

“g‘\ﬂ otherwise
CUV

g _ g’égg if Ais on UV
CY

{ ésAPQ if Aison UV
_ CPDQ

ol %

‘gﬂ\& otherwise
CUDV

Lemma 2.10 (EL2) If Y is introduced by{FooTY P U V) then (we assume thatAY):

AY Ppuv Ppcav+PrvuPpcay if Ai

g — EPUVPCVCJFPPVUPCUC*PPUVPPVU ifAis on UV

CY Sy otherwise
cuv

Pcoc

S otherwise
CUDV

ol Z
|

_{PPCAD if Aison UV

6 Notice that in this and other lemmas, the conditloon UV is trivially met if A is one of the points)
andV. This special case may be treated as a separate case for ¢hef gdficiency.
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Lemma 2.11 (EL3) IfY is introduced byPRATIOY R P Q ) then (we assume that-AY ):

£3+r

b
pel

AY Z%H if Ais on RY
—_— = ?g
CcY S .
SAPRQ - otherwise
CPRQ
AR,

PR ifAisonRY

CD

ol z
|
3

SAPRS otherwise
Lemma 2.12 (EL4) If Y is introduced by{TRATIO Y P Q 1) then (we assume thatAY):

Sapo=4 PP it A is on PY

g _ }S)CPQ* 2Prqp
CcY ers otherwise
CPQ
T . .
AY SAPET‘BZWP if Ais on PY
CD 71) APQ otherwise
CPDQ

Lemma 2.13 (EL5) Let G(Y) be a linear geometric quantity and Y is introduced byTER

YUV PQ.Then:
G(Y) = SUPQG(V) 7SVPQG(U) .
SupvQ

Lemma 2.14 (EL6) Let G(Y) be a linear geometric quantity and Y is introduced bpoT

Y PU V). Then:
G(Y) = PeuvG(V) +PevuG(U)
Puvu
Lemma 2.15 (EL7) Let G(Y) be a linear geometric quantity and Y is introduced(BrA-

TIOY WUV ). Then:

G(Y)=G(W)+r(G(V)—G(U)).
Lemma 2.16 (EL8) If Y is introduced by{TRATIOY P Q 1) then:
r
SaBY = SpBp— ZPPAQB-
Lemma 2.17 (EL9) If Y is introduced bYTRATIOY P Q 1) then:

Pay = Pasp — 4 Spags-

Lemma 2.18 (EL10) Let G(Y) be a linear geometric quantity and Y is introduced(hy-
TERY UV P Q then it holds that:

S
Pare= =2 G(V) +
Supvq

Svp SupqQ - Svpq- Puvu
VPO Gu) — PR & Q )
SupvQ SUPVQ

Lemma 2.19 (EL11) Let YY) be a linear geometric quantity and Y is introduced BpoT
Y PU V) then:

_ Peuv 5y 4 PPVU _ Peuv-Pevu.

Pavs=
Puvu Puvu Puvu
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Geometric Quantities
% é\% Sasy Sascy ‘ Pasy Pascy | Pars
£ | Ecs2| EL EL5 EL10
é § ECS3 EL2 EL6 EL11
g ) ECS4 EL3 EL7 EL12
© ECS5 EL4 EL8 EL9 EL13
Elimination Lemmas

Table 2.3 Elimination Lemmas

Lemma 2.20 (EL12) If Y is introduced byPRATIOY W U V ) then:
Pavs= Paws+1(Pavs—Paus+2-Pwuv) —I(1—r)Puvu.
Lemma 2.21 (EL13) If Y is introduced bY{TRATIO Y P Q1) then:
Pavs= Paps+*Ppop — 4 (Sapg+ Sep0)-

The information on the elimination lemmas is summarisedabld@ 2.3.

On the basis of the above lemmas, given a statei@eihis always possible to elimi-
nate all constructed points (in reverse order) leaving émdg points, numerical constants
and numerical variables. Namely, by Lemma 2.8, all geomejuiantities are transformed
into one of the standard forms and then appropriate elindndmmas (depending on the
construction steps) are used to eliminate all constructéts

2.5 The Algorithm and its Properties

In this section we present the area method’s algorithm. Ataéxed in section 2.1, the idea
of the method is to eliminate all the constructed points dueah to transform the statement
being proved into an expression involving only independgumetric quantities.

2.5.1 Dealing with Side Conditions in Elimination Lemmas

Apart from ndg-conditions of the construction steps, tlaesalso side conditions in some of
the elimination lemmas. Namely, some elimination lemmaItao cases (side conditions)
— positive (always of the formAis onPQ") and negative (always of the formA‘is not on
PQ"). As in the case of ndg-conditions, the positive side ctinds (those of the formAis
onPQ’) can also be expressed in terms of geometric quantitieS{ag = 0) and checked
by the area method itself. Negative side conditions (exqe@sdSapg # 0) can also be
proved in some situations.

Namely, if the area method is applied to a conjecture witha gbthe formE; # E;
and if it ends up with an inequality that is a trivial theoreeng(, 0+ 1), then the original
statement is a theorem.

In one variant of the area method (implemented in GCLCprees 3.1), non-degeneracy
conditions can be introduced not only at the beginning (@asethe hypotheses), but also
during the proving process. If a side condition for the pesitase of a branching elimina-
tion lemma (the one of the forin= R) can be proved (as a lemma), then that case is applied.
Otherwise, if a side condition for the negative case (theaftiee formL # R) can be proved
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(as a lemma), then that case is applied (see Section 2.5tBigorariation of the method).
Otherwise, the condition for the negative case is assumddrairoduced as an additional
non-degeneracy condition. Therefore, this approach dedyroving subgoals (which initi-
ate a new proving process on that new goal). However, there fisanching, so the proof is
always sequential, possibly with lemmas integrated. Lemara being proved as separate
conjectures, but, of course, sharing the construction anebiegeneracy conditions with the
outer context. Note that in this variant of the method, tla¢eshent proved could be weaker
than the original, given statement as the method magduceadditional ndg-conditions.
Moreover, ndg-conditions that the method may introducddcba unnecessary, and the re-
sulting statement could be less general than necessary.

In another variant of the method (implementeddag see 3.2), if a condition for one
case can be proved, then that case is applied, otherwise&gdl are considered separately.
Therefore, this variant may produce branching proofs (besdot generate additional ndg-
conditions). Note that this variant does not change thélrstatement and does not risk
introducing ndg-conditions which are not needed. Indeadekample, in some contexts it
could be the case that neith&always belongs t€D nor always it does not belong @D,
but the statement to be proved is still trudisthcases. Using the first variant of the method,
in such cases, the conditidiacp # 0 would be added to the statement whereas the theorem
could be proved without this assumption.

2.5.2 Uniformization

The main goal of the phase of eliminating constructed pagrtisat all remaining geometric
guantities are independent. However, this is not exactyctise, because two equal geo-
metric quantities can be represented by syntacticallgifit terms. For instancasc can
also be represented I8tap. ToO solve this issue, it is needed to uniformize the geometri
guantities that appear in the statement. For this purposet, @ conditional rewrite rules is
used. To ensure termination, these rules are applied orey#fB andC stand for variables
whose names are in alphabetic order.

The uniformization procedure consists of applying exhaebt the following rules:

BA — —AB by Lemma 2.1
SecA — SaBC Sacs — —SaBc
ScaB — SaBc Ssac — —Sagc byLemma 2.4
Scea — —SaBsC
Pcea — Pasc by Lemma 2.6
PsaB — Pasa by Lemma 2.7

2.5.3 Simplification

For simplification of the statement the following rewritéesiare applied.
Degenerated geometric quantities:

%<

—0  Saag— 0 Paag— 0
Sgaa— 0 Pgan— 0
Spga— 0
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Ring simplifications:

a-0—-0 O+a— a -0-0 (-a)-b— —(a-b)
0-a—0 a+0— a ——a—a a-(=b) = —(a-b)
l.a—wa a-0— a —-a+a—0 —a-—b—a-b
a-l—»a 0O-a— —-a a+(-b)—a-b

a—a— 0 -b+a—a-b

c1+ C2 — c3 Wherec; andc; are constants (elementsief andcy + ¢, = c3
c1-C2 — C3, wherec; andc; are constants (elementsff andc; - ¢, = c3
Field simplifications (ifa # 0):

a1 950 2P
a1 8 ,a L0
251 a()—-1 25p
251 ba 5 p

2.5.4 Dealing with Free Points: Area Coordinates

The elementary construction step ECSL1 introduces arpipaints. Such points are the
free pointson which all other objects are based. For a geometric stateSe (Cq,Cp,
...,Cm, (E1 = E2)), one can obtain two rational expressidt{sandEj in ratios of directed
segments, signed areas and Pythagoras differences ifirealgoints numerical constants
and numerical variables. Most often, this simply leads wedities that are trivially provable
(as in Ceva’s example). However, the remaining geometramtjties can still be mutually
dependent, e.qg., for any four poirsB, C, andD, by Axiom 6:

Sasc = Sasp + Sapc + Spbec

In such cases, it is needed to red&geandE) to expressions in independent variables. For
that purpose tharea coordinatesire used.

Definition 2.3 Let A, O, U, and V be four points such that O, U, and V are nofiroedr.
The area coordinates of A with respect to OUV are:

Soua Soav Sauv
= A = = .
Souv’ Souv’ Souv

Itis clear that > +ya+2za = 1.

It holds that the points in the plane are in an one to one qooregence with their area
coordinates. To represelBi andE;, as expressions in independent variables, first three new
pointsO, U, andV, such thaDU L OV andd = OU = OV, are introduced (for soma:from
F). Expressiong&; andE, can be transformed to expressions in the area coordinathe of
free points with respect tOUV.

For any pointP, let Xp denoteSoup, let Yo denoteSoyp, and letCol(A, B,C) denote the
fact thatA, B andC are collinear.
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Lemma 2.22 For any points A, B, C and D such that:£D and AB|| CD:

XeYA—XcYB—YaXg+YeXa—YcXa+YcXs

if not Col(A,C,D)

XgYa—XaYs
XpYc—XcYp

ol &

Souv (Xg—Xa)+XgYa—XaYs
Souv (Xp—Xc)+XpYc—Xc Yo

Souv (Ys—Ya)+XsYa—YsXa
Souv (Yo—Yo)+XpoYc—YoXc

Lemma 2.23 For any points A, B and C:
(B=Yc)Xa+(Yc—Ya) Xe+(Ya—YB) X

Saec = Souy .

Lemma 2.24 For any points A, B and C:

XeYa—XcYD—YaXp —YcXa+YcXp +XaYD

Pasc = 8(

Lemma 2.25 Soyy = id—;.

Using lemmas 2.22 to 2.25, expressi@sandE; can be written as expressionsdf,
and in the geometric quantities of the foSyp or Sovp whereP is a free point (there ¥

such thatSoyy = %).

After this transformation, the equalit; = E; is transformed into an equality over
independent variables and numerical parameters.

YaYo—YaYs+YZ—YeYo—XaXg+XaXc+XE —XeXc )
o2 '

if Col(A,C,D) and
not Col(O,A,C)
if Col(A,C,D) and
Col(0O,A,C) and
not CollU,A,C)

otherwise

2.5.5 Deciding Equality of Two Rational Expressions

After the elimination of constructed points, uniformizatiof geometric quantities, treat-
ment of the free points, and the simplification, an equaliineen two rational expressions
involving only independent quantities is obtained. To deduch an equality (by transform-

ing its two sides), the following (terminating) rewrite eslare used.

Reducing to a single fraction:

a atchb b ab a ac

a
a c-bta a ac b a

Ctp = ™% [ S ¥
a

a c atc a . c ac b ad

bbb b'd ?bd T b

a_ ¢ ad+cb

btd ™ “hd

Reducing to an equation without fractions:
g=c—a=cb d=f—sa=c
c=2—-cb=a p=g—ad=cb

Reducing to an equation where the right hand side is zero:

a=c—a—-c=0

Reducing left hand side to right associative form:
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((a+b)+c) — a+(b+c) a-(b+c) — a-b+a-c
((a-b)-c) - a-(b-c) (b+c)-a—b-a+c-a

a-c— c-a, wherec is a constant (element &) anda is not a constant.

a-(c-b) — c-(a-b) wherec is a constant (element &) anda is not a constant.

c1-(Cz2-a) — c3-awherec; andcp are constants (elements®f andc; - ¢ = Cs.

Ei+---+E_14+Cc-C+E+--+E_1+6-C+E+ - +En—>E1+---E_1+
c3-C+E11+---+Ej_1+Ejy1+ - +En, wherecy, ¢, andcs are constants (elements of
F) such thatt; + ¢, = ¢z andC andC’ are equal products (with all multiplicands equal up
to permutation).

The above rules are used in the “waterfall” manner: theyr@ed for applicability, and
when one rule is (once) applied successfully, then the fitherules is tried from the top.
The ordering of the rules can impact the efficiency to somerext

The original equality is provable if and only if it is transfoed to 0= 0.

Note that all the rules involving ratios given above can bgliad to ratios of directed
segments, as (following the axiom system given in Secti@r2ratios of directed segments
are ratios overF. Since these rules are applied after the elimination pgadbegre is no
danger of leaving segment lengths involving constructedtpgby breaking some ratios of
segments). However, in this approach all ratios are harmtddat the end of the proving
process. To increase efficiency, it is possible to use thdes during the proving process.
Namely, all the rules involving ratios can be used also indingplification phase, but not
applied to ratios of segments (they are treated as spedalafaatios). The first approach
is implemented irCoq (see Section 3.2), the second in GCLCprover (see Sectign 3.1

The set of rules given above is not minimal, in a sense thaesuoes can be omitted
and the procedure for deciding equality would still be coetgl However, they are used for
efficiency. Also, additional rules can be used, as long asdheterminating and equivalence
preserving.

2.5.6 Non-degeneracy Conditions

Some construction steps are possible only if certain cmmditare met. For instance, the
construction of the intersection of linesandb is possible only if the lines andb are
not parallel. For such construction steps, ndg-conditemesstored and considered during
the proving process. Non-degeneracy conditions of thetnarton steps have one of the
following two forms:

— A# Bor, equivalentlyPaga # O;
— PQ}{UV or, equivalentlySpuv # Squv.

A ndg-condition of a geometry statement is the conjunctibndg-conditions of the
corresponding construction steps, plus the conditionsttteadenominators of the ratios
of parallel directed segments in the goal equality are naaktp zero, and the conditions
that AB || CD for every ratio% that appear in the goal equality. As said in Section 2.3.2,
it is proved that the goal equality follows from the constioic specification and the ndg-
conditions. Hence, if the negation of some ndg-conditiom @eometry statement is met
(i.e., ifitis implied by the preceding construction stegtlg left-hand side of the implication
is inconsistent and the statement is trivially a theoremtiigoe is no need for activating
the mechanism for transforming the goal equality). Negetiof these ndg-conditions are
checked during the proving process. As seen from the abawesfahese negations can
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be expressed as equalities in terms of geometric quarditiécan be checked by the area
method itself.

As an example, consider a theorem aboutrapossible constructiarLet A, B andC
be three arbitrary points (obtained by ECS1). Debe on the line parallel té\B passing
throughC (obtained by ECS4). Ldtbe the intersection dhB andCD (obtained by ECS2).
Then, the assumptions of any statem@rto be proved about these points are inconsistent
since the construction dd implies AB || CD and the construction df implies AB }f CD.
ThereforeG is trivially a theorem.

Additional ndg-conditions (additional with respect to thieginal statement) may be
introduced during the proving process in the non-branchjmgroach (see Section 2.5.1) to
ensure that the elimination lemmas with side-conditiomslimapplied.

Ndg-conditions from definitions given in Table 2.1, are mewv@art of the assumptions
of a statement, since the assumptions are built from thetemti®n steps and the goal
equality. They can be used only as goal equalities (or gegjLialities — see Section 2.5.8),
when proving some of the properties defined as in Table 2.&nsoire a full compliance
with the Hilbert style geometry for degenerative cases.

2.5.7 The Algorithm

The area method checks whether a constructive geometgmeat(Cy,Cy,...,Cn,E1 =

E») is a theorem or not, i.e., it checks whetltar= E; is a deductive consequence of the
construction(Cy,Cy, . ..,Cy), along with its ndg-conditions. As said, the key part of the
method is eliminating constructed points from geometriargities. The point are intro-
duced one by one, and are eliminated from the goal expresstbe reverse order.

Algorithm: Area method

Input: S= (Cy1,Cy,...,Cnm, (E1 = E2)) is a statement ilC.

Output: The algorithm checks wheth®rs a theorem or not and produces a corresponding
proof (consisting of all single steps performed).

1. initially, the current goal is the given conjecture; skate the goal in terms of ge-
ometric quantities using Table 2.1 in Section 2.2.1 and geeall ndg-conditions
for S
2. process all the construction steps in reverse order:
(a) if the negation of the ndg-condition of the current camstion step is met, then
exit and report that the conjecture is trivially a theorereowise, this ndg-
condition is one of the assumptions of the statement.
(b) simplify the current goal (by using the simplificatioropedure, described in
2.5.3);
(c) if the current construction step introduces a new pBinthen eliminate (by
using Lemma 2.8 and the elimination lemmas) all occurrefdsfrom the
current goal;
3. uniformize the geometric quantities (using the unifaation rules, described in
2.5.2);

. simplify the current goal (by using the simplification pedure, described in 2.5.3);

. test if the obtained equality is provable (by using thecpdure given in 2.5.5); if
yes, then the conjectute; = E is provable, under the assumption that the ndg-
conditions hold, otherwise:
(a) eliminate the free points (using the area coordinatedgeacribed in 2.5.4);

(200
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(b) simplify the current goal (by using the simplificatioropedure, described in
2.5.3);

(c) testif the obtained equality is provable (by using thecedure given in 2.5.5);
if yes, then the conjecture; = E; is proved, under the assumption that the
ndg-conditions hold. Otherwise the conjecture is not armo

Checking the ndg-conditions within the main loop can alsgédormed by the area
method itself (based on the construction steps that prebedaurrent step).

2.5.8 Properties of the Area Method

TerminationSince there is a finite number of constructed points, theadfiisite number of
occurrences of these points in the statement, and sincelneggolication of the elimination
lemmas there is at least one occurrence of a constructetspaiminated, it follows that
all constructed points will be eventually eliminated frohe tstatement. Therefore, as the
simplification procedure and the procedure for decidingadityuover independent parame-
ters terminate, the whole of the method terminates as wk#.Mumber of ngd-conditions
is always finite, so it can be proved by a simple inductive argut that the method termi-
nates also if it is used for checking ndg-conditions (simcedch recursive call there is less
ndg-conditions).

CorrectnesS he area method (as described here) is applied to geomatgnstnts of the
form C = E; = E,. If some of ndg-conditions is inconsistent with the presgiguintro-
duced ndg-conditions, the formuais inconsistent, so the statement is trivially a theofem.
Otherwise, the method transforms the initial formula to arfolaC = E; = E; such that
the equalityE] = E, involves only independent variabl@g hanks to the properties of the
elimination lemmas and of the simplification procedure, itiigal formula® is a theorem
(i.e., is a consequence of the axioms) if and only if the fioaifula is a theorem. Hence,
if E; = E} is provable, then the original statement is a theorer; K= E} is not provable,
the original statement is not a theorem (sificis consistent). In summary, the original for-
mula is a theorem if and only € is inconsistent oE] = E} is provable. Therefore, thanks
to the properties of the simplification procedureElfis identical toE5, the statement is a
theorem. Otherwise, since all geometric quantities appgam E; andE) are independent
parameters, in the geometric construction considereddaeyake arbitrary values, so it is
possible to choose concrete values that lead to a counteptedor the statement. There-
fore, the method is terminating, sound, and complete: foh g@ometry statement (defined
in Section 2.3.2), the method can decide whether or not itearem, i.e., the method is a
decision procedure for that fragment of the theory with tivergaxiom system?®

Each conjecture that can be proved by the axioms for the ae#i@oth is also a theorem
of Hilbert's geometry (as explained in Section 2.2.2).

7 The number of ngd-conditions is always finite, so it can be @ddwy a simple inductive argument that
the area method can be used for checking ndg-conditions.

8 In the non-branching variant of the method (see Section R.té& formulaC may be augmented by
additional ndg-conditions along the proving process.

9 In the non-branching variant of the method (see Section R fhd initial formula may be updated.

10 This fragment can also be defined as a quantifier-free theahythe set of axioms equal to the set of
all introduced lemmas. It can be easily shown that this theogy sub-theory of Euclidean geometry (e.g.,
built upon Hilbert’s axioms) augmented by the theory of fieldhére the theory of fields enable expressing
measures and expressions).



The Area Method: a Recapitulation 23

The area method can also be used for proving (some) geontateyrents of the form
C = E; # Ey. If Cisinconsistent, the statement is trivially a theorem. @tlige, the method
transforms the initial formula to a formu@=- E; # E5. The initial formula is a theorem if
and only if the final formula is a theorem. HenceE[f # Ej is provable! then the original
statement is a theorem. H; # E} is not provable, the original statement is not a theorem
(sinceC is consistent). In summary, the original formula is a theoi€and only if C is
inconsistent oE; # Ej is provable.

ComplexityThe core of the method does not have branching (unless tl@vabnsidering
both cases in ndg-conditions is used, as explained in $e2t®6), which makes it very
efficient for many non-trivial geometry theorems (stillethrea method is less efficient than
provers based on algebraic methods [9]).

The area method can transform a conjecture given as an ggoetiveen rational ex-
pressions involving constructed points, to an equalityimailving constructed points. Each
application of elimination lemmas eliminates one occuceeof a constructed point and re-
places a relevant geometric quantity by a rational expoessith a degree less than or equal
to two. Therefore, if the original conjecture has a degtesnd involvesn occurrences of
constructed points, then the reduced conjecture (withossttucted points) has a degree of
at most 2 [9]. However, this degree is usually much less, especiéltie simplification
procedures are used along the elimination process. Theeadrwlysis does not take into
account the complexity of the elimination of free points #mel simplification process.

3 Implementations of the Area Method

In this section we describe specifics of our two (indepernjdemtlementations of the area
method and briefly describe other two implementations. \&fe déscribe some applications
of these implementations.

3.1 The Area Method in GCLC

The theorem prover GCLCprover, based on the area methodrtisfa dynamic geometry
tool GCLC. This section begins with a brief description of IGC

3.1.1 GCLC

GCLC!2[29,32] is a tool for the visualisation of objects and nosiar geometry and other
fields of mathematics. The primary focus of the first versiohthe GCLC was producing
digital illustrations of Euclidean constructions #TX form (hence the nameGeometry
Constructions— IATEX Converter”), but now it is more than that: GCLC can be used in
mathematical education, for storing visual mathematioatents in textual form (as figure
descriptions in the underlying language), and for studyngpmated reasoning methods
for geometry. The basic idea behind GCLC is that constrostere abstract, formal proce-
dures, rather than images. Thus, in GCLC, mathematicattsbgre described rather than

1n ProvingE] # E5 may not be trivial, for instance, in the exampfet-1 £ 0.
12 http://www.matf.bg.ac.rs/~janicic/gclc
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drawn. A figure can be generated (in the Cartesian model ofidéan plane) on the ba-
sis of an abstract description. The language of GCLC [32kiste of commands for basic
definitions and constructions, transformations, symbzaiculations, flow control, drawing
and printing (including commands for drawing parametricves and surfaces, functions,
graphs, and trees), automated theorem proving, etc. lidlsraf GCLC procedures provide
additional features, such as support for hyperbolic gepm@CLC has been under constant
development since 1996. It is implementeddm+, and consist of around 40000 lines of
code (automated theorem provers take around half of itewhé area method takes around
8000 lines of code).

WinGCLC is a version with aViS-Windowsgraphical interface that makes GCLC a
dynamic geometry tool with a range of additional functidties (Figure 3.2).

Example 3.1 The example GCLC code given in Figure 3.1 (left) describetadle and
the midpoints of two of triangle’s sides. From this GCLC cdeigure 3.1 (right) can be
generated.

point A 20 10
point B 70 10
point C 35 40

midpoint B’ B C
midpoint A’

=
Q

drawsegment
drawsegment
drawsegment
drawsegment

=W e
Q

cmark_b
cmark_b
cmark_t
cmark_1
cmark.-r

>
w

weEQwWe

Fig. 3.1 A description of a triangle and midpoints of two of trianglsides in GCLC language (left) and the
corresponding illustration (right)

3.1.2 Integration of the Area Method

GCLC has three geometry theorem provers for Euclidean ngtste theorems built in: a
theorem prover GCLCprover based on the area method, dedlmpPredrag Jatic and
Pedro Quaresma [33], and algebraic theorem provers bast#tkdBbbner bases method
and on Wu's method, developed by Goran Predand Predrag Jatit [51]. Thanks to
these theorem provers, GCLC links geometrical contengsigvinformation, and machine—
generated proofs.

The provers are tightly integrated in GCLC — one can use tbequs to reason about
objects introduced in a GCLC construction without any adtins other than the addition
of the conjecture itself. GCLCprover transforms a constomccommand into a form re-
quired by the area method (and, for that purpose, may integlsaome auxiliary points). A
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G WinGCLC - [sam ple04_triangle.gcl] [BEE
File Edit Source Picture View Window Help BEE
Dl 8 97? FEEFEKR|QRQQ S &

number XSIZE 130 =
number YSIZE 130
dim XSIZE YSIZE

point P1 § §
point P3 125 125

rea Xlb Ylb Xrt Yrt
point P2 Xrt Ylb

point B4 Xlb Vrt

drawdashsegment P1 P2
drawdashsegment P2 P3
drawdashsegment P3 P4
drawdashsegment P4 P1

point B 35 60
point C 65 57
point A 40 80

line a B C
line b A C
line c A B

midpoint A
midpoint B
midpoint C.

B
2
a

@mao

med a_1C B
med b_1 A C
med c_1 A B
intersec 0 a_1b_1
circle 1 0 &

CIRCLE : (50 82 66 £7,17.17) a
POINT : (50.82.66.67)
LINE : (1.0

5
3
=
-

0, 5!
LINE : (1.00,-0.25.-20.00)
LINE : (1.0001.09,-126 961
LINE © (100,10 00.-635.00)
POINT : (40.00,80.00)
POINT : (£5.00/57.00)
POINT : (35.00,60.00) ~

» A EOFEIETEEOR I ON A

Ln20, Col 14 x=60.00  y=53.30  Zoom:4.21 UM

Fig. 3.2 WinGCLC Screenshot (the textual description on the lefdhgide and the visualisation on the right
hand side depict the circumcircle, the inscribed circle, thiedthree escribed circles of the triangiBC)

conjecture is given in the fore; = E;, whereE; andE;, are expressions over geometric
quantities. Alternatively, a conjecture can be given inftren of higher-level notions (given
in Table 2.1). For instance, for the construction shown iarBgle 3.1, it holds that the lines
ABandA'B’ are parallel and this conjecture can be given as an argumémtprove com-
mand:prove {parallel A B A’ B’}, after the description of the construction. The prover
is invoked at the end of processing of the GCLC file and it atersi only abstract specifi-
cation of the construction (and not Cartesian coordinafte$ the points involved, given by
the user for visualisation purposes). There are GCLC cordséor controlling a levels of
detail for the output and for controlling the maximal numbéproof steps or maximal time
spent by the prover.

Thanks to the implementation i@++ and to the fact that there are no branching in
the proofs, GCLCprover is very efficient and can prove manymex theorems in only
milliseconds (for examples see the GeoThms web reposiesgribed in Section 3.4.1).

3.1.3 Specifics of the Implementation in GCLC

The algorithm implemented in GCLCprover is the one desdribé&ection 2.5.7, with some
specifics, used for increased efficiency and/or simpler@mgintation. With respect to the
simplification procedure described in 2.5.3, there aredhieviing specifics:

— The unary operator~" is not used (and insteadx is represented &s-1) - x). Hence,
the rules involving this operator are not used.
— The rules involving fractions given in 2.5.5 are not appliedatios of segments. Instead,
AB

the following rules are used within the simplification prdoeeQ;S =151
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— The following additional rules are used within the simphtion phase:

— X —(1/c)-x, wherecis a constant (element &) andc # 1.

Ej-....Ei_1-CE1-....En N Ej-...Ei_1-Eiy1-...En

E{-E ,CE,..Ey ' E{.E E . Efy

—E+---+E_1+¢-C+E 1+ ---+Ey= Ei+--~+EJ{71+CZ-C’+E]{+1+~--+
E,—Ei+-+E_1+¢3-C+E;1--+En= E1+---+E371+Ef+1+~--+E{n
wherecy, ¢,, andcs are constants (elementsfef such thatc; — ¢, = ¢z andC and
C’ are equal products (with all multiplicands equal up to peation).

— If the current goal is of the forr, + ...+ En = E; +...E/, and if all summandg;
andEJf have a common multiplication factef, then try to prove that it holds = 0:

e if X =0 has been proved, the current goal can be rewritten=®0

e if X =0 has been disproved (i.e. Xf= 0 has been proved), then both sides in
the current goal can be cancelled Xy

e if neither X = 0 nor X # 0 can be proved, then assuiie# 0 (and add to the
list of non-degeneracy conditions) and cancel both sidéisarcurrent goal by
X.

— The uniformization procedure (2.5.2) is used within the @ifitation procedure. In
addition, the ruleSagc — O is applied for each three collinear poir{sB, C.
— Reducing to area coordinates is not implemented. Insteadpliowing rules are applied
at that stage:
- AA—=0
— Sac — SasDp + Sapc + Spae, if there are termsSagp, Sapc, Spec in the current
goal.
- /PABc%AiB2+CiBZ+71-E2
Note that after these rules have been applied, the equalitgiproved may still involve
dependent parameters. The simplification process is @ppfeain and the equality is
tested once more. Even without reducing to area coordindtesabove rules enable
proving most conjectures from the area method scope.

Concerning ndg-conditions, the prover records and redsit the ndg-conditions of
construction steps, but there is no check of the ndg-camditithin the main loop by the
area method itself (as described in Section 2.5.7). Instbade is a semantic check, using
floating numbers and Cartesian coordinates associated fethpoints by the user. For each
construction step, it is checked if it is possible (e.gwbtines do intersect) and these tests
corresponds to checking the ndg-conditions of the geonstatement. If all these checks
pass successfully (i.e., if all construction steps areipteys all the ndg-conditions are true
in the concrete model, and hence, the assumptions of thenmat are consistent3 In
that case, the construction is visualised and the congd$usent to the prover. Otherwise,
if some of the checks fails, an error is reported, the constr is not visualised, and the
conjecture is not sent to the prover.

If a side condition for one case of a branching eliminatianriga can be proved, then
that case is applied, otherwise, a condition for the negatase is assumed and introduced
as an additional ndg-condition (as explained in Sectionl2.9he same approach is used
when applying the cancellation rule (see section 3.1.3).

13 Ensuring consistency is important for the case that thermlgjoal transforms to an equality that is not
valid. In that case, the original statement is not a theorem 8ection 2.5.8).
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3.1.4 Prover Output

The proofs generated by GCLCpro¥tcan be exported taXTeX or to XML form using a
special-purpose styles and with options for different fatting. At the beginning of an out-
put document, the auxiliary points are defined. For eachfstep (a single transformation
of the goal being proved), there is an ordinal numbers, ataeggion and, optionally, its
semantic counterpart — as a check (based on floating-poimbats) whether a conjecture
is true in the specific case determined by Cartesian codediressociated (by the user, for
the sake of visualisation) to the free points of the consitbaqthis semantic information is
useful for conjectures for which is not known whether or @yt are theorems). Lemmas
(about side conditions) are proved within the main proofKimg nested proof levels). At
the end of the proof, all non-degeneracy conditions aredidn the following is a fragment
of the output (generated iATEX) for the conjecture from Example 3.1:

Shate - (1)

Sp/an “Sgpy

by geometrical simplifications 2)
(syant (3 (Swact (-2'Swma))))  =Swew

by Lemma 29 (point( eliminated) (3)

0 :(o+(%»(o+(71-0))))

by geometrical simplifications (15)
0 =0

by algebraic simplifications (16)

QE.D.
There are no ndg conditions.

Number of elimination proof steps: 5
Number of geometrical proof steps: 15
Number of algebraic proof steps: 25
Total number of proof steps: 45

Time spent by the prover: 0.001 seconds

3.2 The Area Method i€oq

This section describes the formalisation of the area metisiny the proof assista@oq
Coqis a general purpose proof assistant [1,28,61]. It allows tonexpress mathematical
assertions and to mechanically check proofs of these ass®ert

3.2.1 Coq

Although theCoq system has some automatic theorem proving featuresnivtign au-
tomatic theorem prover. The proofs are mainly built by therusteractively The system
allows one to formalise proofs in different domains. Fortange, it has been used for the
formalisation of the four colour theorem [22] and the fundsual theorem of algebra [21].
In computer science, it can be used to prove correctnes®gfams, like a C compiler that
has been developed and proved correct u€iog[38].

There are several recent results in the formalisation ahetgary geometry in proof
assistants: Hilbert'&Srundlagen27] has been formalised in Isabelle/lsar [42] andcCioq
[16]. Gilles Kahn has formalised Jan von Plato’s constugctieometry in theCoq sys-
tem [34,49]. Federique Guilhot has made a large developmer@agdealing with French
high school geometry [24]. Julien Narboux has formalisedKi&s geometry using th€oq
proof assistant [46]. Jean Duprat proposes the formadisati Coqof an axiom system for

14 There are no object-level proofs verifiable by theorem prgwssistants.
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compass and ruler geometry [17]. Projective geometry testaden formalised i€oq[40,
41].

3.2.2 Formalisation of the Area Method

The goal of the formalisation of the area method@aq) is to bring the level of automa-
tion provided by the method to tH@oq proof assistant. This is done by implementing the
decision procedure as@oqtactic and formalising all theorems needed by the method. We
defined an axiom system, proved all the propositions neegédtebtactics (we formally
proved more than 700 lemmas) and wrote the tactics. Jdepdevelopmerif consists of
about 7000 lines of specifications (this includes the statgmof the lemmas and the tac-
tics), and 6400 lines of proofs.

Conceptually, proving the propositions and writing thditzcthat use them seem to be
two separate tasks. But to ease the development, in ouriingpigtion we have intermixed
the proofs of the propositions and the tactics. We bootgieapally the construction of the
whole decision procedure by using some automatic tacticth@proof of the elimination
lemmas. Our tactic is decomposed into sub-tactics perfagrtiie following tasks: initiali-
sation; simplification; uniformization; elimination of nstructed points; elimination of free
points; conclusion.

The implementation of the prover is realized using the lagguWac'® which is inte-
grated in the systerf@oq

We did not prove formally the completeness of the methodémgntation (i.e., that the
tactic always succeeds if the conjecture is a theorem). @urdl proofs guarantee only the
soundness of the method implementation (i.e., the proofergéed by the tactic are always
correct).

3.2.3 Specifics of the Implementation in Coq

In this section, we describe the algorithm which is used @Qhbgs implementation of the
area method.

As the method is implemented within a proof assistant, et af the algorithm cor-
responds to a proof step that is checked by@log system. At the end of the proof, it is
checked another time by th@oqkernel as explained in section 3.2.5. The main difficulty
is thatCogmust be “convinced” at each step that the transformationeviopnm is correct.
For this we have to maintain two invariants:

1. For eactsyntacticexpression which occurs at the denominator of some fraétibtine
goals or of an assumption), the context always containsef finat it is not zero.

2. For eachsyntacticexpression which represents a ratio of directed segma®40D),
the context always contains a proof tiAd is parallel toCD.

The algorithm implemented i€oq corresponds to the algorithm described in Sec-
tion 2.5.7. We give details only for the phases with specdatdres.

15 http://dpt-info.u-strasbg.fr/~narboux/area_method.htm
16 The Liac language is a domain specific language which allows the userite his/her own proof
schemes.
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Initialisation.The initialisation phase performs the following tasks:

1. unfold definitions;
2. introduce hypotheses in the context;

3. encode constructions of half-free points (points thadrig to a line or a circle) into
constructions of fixed points with a parameter;

4. compose simple constructions into more complex consbnewhen it is possible;

5. transform hypotheses of the forn% B into AB# 0

6. split conjunctions in the goak. decompose conjunctions in the goal into several goals;

7. check that the invariants are initially satisfied.

Dealing with Non-degeneracy Conditions and Case SplitssminasAs GCLC, the Coq
implementation does not deal with ndg conditions, we asstiraethe statement is not
contradictory.

Concerning case splits in elimination lemmas, new ndg-itimmd are not generated
(unlike in GCLCprover) and, instead, case distinction isfgrened (as explained in Sec-
tion 2.5.1).

We give a detailed description of how the tactic works on tkengple 3.2 by decom-
posing the procedure into small stéps

The midpoint theorem is stated using our language in theagyftCoqgas follows:

Example 3.2
Theorem midpoint_A :

forall A B C A’ B’ : Point, midpoint A’ B C ->
midpoint B’ A C -> parallel A’ B’ A B.

geolnit.

1 subgoal
A : Point
B : Point
C : Point
A’ : Point
B’ : Point

H : on_line d A’ BC (1 / 2)
HO : on_line_d B’ AC (1 / 2)

SA” AB’ +S A B B=0

%)

on_line.d A’ B C (1/2) states that Ais on line BC an ==

O
NI

At this step it would be enough to typeea_method to solve the goal using our decision
procedure, but for this presentation we mimic the behavibtine decision procedure using
our sub-tactics. We give the name of the sub-tactics on thateCoqoutput on the right:

17 These steps are not exactly the same steps as those execatedaayomatic procedure (the automatic
procedure may treat the points in another order, and perforre simplification and unification steps).

18 For this presentation the fact that B, C, A, andB’ are of typePoint has been removed from the
context.
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geolnit. H : onlined A’ BC (1 / 2)
HO : onlined B’ A C (1/ 2)

S A’ AB” +SA”B”B=0

eliminate B’. H : onlined A’ BC (1 / 2)

1/2*xSA AC+(1-1/2)*SA AA+
(1/2*xSBAC+(1-1/2)*S8SBA A =0

basic_simpl. H : onlined A’ BC (1 / 2)

1/2*SA AC+ (1 /2*SBAC+1/2%SBA A =0

eliminate A’.

1 /21 /2*x8SACC+(1-1/2) xSACB) +
BC+(1-1/2) xSCBB) +
BC+(1-1/2)xSABB)) =0

[SEN)
* %
* %

C
A

basic_simpl.

1/2%(1/2*SACB) +1/2%(1/2%*SABC) =0

uniformize.

1/2*x 1 /2*SACB)+1/2%(1/2*x-SACB)=0
field_and_conclude. Proof completed.

3.2.4 Prover Output

The main comparative feature of the implementatio@agis that it produces formal proofs.
It was built with that main motivation (unlike GCLCprover wh aims at producing proofs
efficiently).

The output of the formalisation iBoqis a formal proof. More precisely, it is a term of
the calculus of inductive constructions which recordstad details of the proof. The files
containing the proof terms have size about 50KB per example.

These formal proofs are not readable, hence to have a reapiadaf we also output a
human readable version of the proofs (using the print st¢provided by i4c) in a textual
format in the console. For instance, for the example givesvepthe following output is
generated:

Area method:
initialisation...
elimination...
elimination of point : B’
we need to show that:
(1/2*8SAAC=1/2%xSA BC+1/2x*8SA”BA)
elimination of point : A’
we need to show that:
(1/2* 1 /2*x5SACB =1/2%(1/2*xS5SBAC)
uniformize areas...
simplification...
before field...

3.2.5 Benefits of the Formalisation

Formalising a decision procedure within a proof assistas ot only the advantage of
simplifying the tedious task of (rigorously) proving gedmyetheorems but also allows us
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to combine the geometry proofs provided by the tactic withiteary complicated proofs
developed interactively using the full strength of the uhdeg logic of the theorem prover.
For instance, theorems involving induction over the nunddgroints can be formalised in
Coqg This approach has also the advantage of providing a higivet bf reliability than

ad hoctheorem provers, because the proofs generated by tactickoable checked by the
Coqinternal proof-checker (th€oqsystem as a whole and its kernel). Namely, since it is
possible thaCoqitself contains a bug, th€oqsystem is, to reduce this risk, built using de
Bruijn’s principle: only a small part of the system callee &ernelis trusted. All the proofs
generated are checked by the kernel. If there is a bug outsédeernel, the system can fail,
but it guarantees the soundness (i.e., it does not allowinan invalid statement).

During formalisation of the area method, we found two pagrsources of incorrect-
ness.

First, during proving, we discovered one mistake in the inabdescriptions [8]: in
lemma EL12 the factor 2 befomyyy was missing.

Second, when proving the invariant that elimination lemmnassform always well de-
fined geometric quantities into an expression involvingyaméll defined geometric quanti-
ties, we noticed that some elimination lemmas require a regederacy condition. Let us
consider Lemma EL3: I¥ is introduced by (RATIOY RP Qr):

LRyr
AY P2~ if AisonRY
— = )
cD ?‘ﬂg otherwise
CPDQ

If A=Y, it may be the case th@D |/ PQ. This demonstrates that the lemma is provable
only if A#Y and otherwise the rati% is not well defined. Hence, during proofs it is

necessary to distinguish the two cas&sY andA # Y) as explained in Section 3.2.3 or to
generate an additional ndg ¢ Y) as explained in Section 3.1.3.

3.2.6 Integration in GeoProof

Similarly to GCLC, the formalisation of the area methodGonqg comes with a dynamic
geometry tool [45]. The software develop&seoProof combines three tools: a dynamic
geometry tool to explore and invent conjectures, an autiorttegorem prover to check facts,
and an interactive proof systef@¢g) to mechanically check proofs built interactively by the
user.

3.3 Other Implementations of the Area Method

Although it is very well-known and widely credited as one bétmost efficient method
for proving geometry theorems that produce readable pr@tfteast in principle), there
are just a very few implementations of the area method. Algiuhe situation is similar
with other proving methods for geometry — to our knowledderé are only around a
dozen implementations in total of other most efficient pngvinethods (Wu’'s method, the
Grobner bases method adapted to geometry theorem provirfglitaegle method [12], and
the deductive database method [13]), counting versionsamg within different systems.
One of the reasons for this is probably the fact that theséadst while having simple
basic ideas, are all still very complex and require manyildeta be filled when making
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a real implementation. Another reason is that these metktiiglon’'t have many real-
world applications (apart from applications in educatiddgving the area method fully
formalised (as described in this paper) could help finding applications, for instance, in
formalisation projects such as Flyspeck [25].

In addition to the two implementations of the area methodaaly described, we are
aware of two other implementations: one used within a faroflyools developed by the
authors of the method and their collaborators, and one deedlwithin the wider system
Theorema

3.3.1 Euclid and Geometry Expert

Euclid is a theorem prover based on the area method, developed g9the authors
of the method — Shang Ching Chou, Xiao Shan Gao, and JinggEbang [8]. It was
implemented iCommon Lis@nd was accompanied by a list of 400 proved theorems.

Geometry Expetf (GEX) is a dynamic geometry tool focused on automated theorem
proving and it implements Wu'’s, @bner basis, vector, full-angle, and the area methods [3].
GEXwas implemented in 1998 by Xiao Shan Gao.

MMP/Geometet’ is a new, Chinese, version ®EX The tool has been developedii
sual Csince 2002 by Xiao-Shan Gao and Qiang Lin. It automates gegmiagram gener-
ation, geometry theorem proving, and geometry theorenod&sing [19]. MMP/Geometer
implements Wu'’s method, the area method, and the geometiyctiee database method.
Conjectures are given in a restricted pseudo-natural Egear in a point-and-click manner.

Java Geometry Expétt (JGEX is a new, Java version GEX[65,66].JGEXhas been
developed since 2004, by Shang Ching Chou, Xiao Shan Gad/leny Ye. JGEXcom-
bines dynamic geometry, automated geometry theorem gypaimd, as its most distinctive
part, visual dynamic presentation of proofs. It providessdes of visual effects for pre-
sentation of proofs. The proofs can be visualised eitherualynor automatically. Within
the program distribution, there are more than six hundredngtes of proofsIGEXimple-
ments the following methods for geometry theorem proving's¥nethod, the Grigbner
basis method, the full-angle method, the deductive dagabeethod. In the latest version
(0.80, from May 2009), the area method andtilaglitional methodare still under develop-
ment.

The systems from th&EX family are publicly available, but they are not open-source
and are not accompanied by technical reports with impleatiemt details, so one cannot
reconstruct how some parts of the proving methods are imgiiésa. Available research
papers describing these tools describe mainly only the-legtl ideas and main required
lemmas, but for instance, descriptions of the simplificafibase and dealing with case splits
are not available.

3.3.2 Theorema

Theorem&? is a general mathematical tool with a uniform framework fomputing, prob-
lem solving, and theorem proving [2[.heoremais implemented irMathematica It has

19 http://www.mmrc.iss.ac.cn/gex/

20 http://www.mmrc.iss.ac.cn/mmsoft/
2! http://www.jgex.net/

22 http://www.theorema.org/
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been developed since 1996 by Bruno Buchberger and a langeatidais collaboratorsThe-
oremahas support for several methods for automated theoremrgowicluding methods
for theorem proving in geometry. The geometry provers astgthed for constructive ge-
ometry problems and there is support for Wu's methodb®er bases method, and the area
method [58]. These provers were implemented by Judit Rdtmuglgebraic geometry theo-
rem provers use implementations of algebraic methods MatthematiceandTheorema

The geometry theorem provers are accompanied by visualisatols typical for dy-
namic geometry. Numerical checks of the validity of geometatements can also be per-
formed for specific coordinates of the points.

In addition to the basic area method, there is also a modigesian that can deal not
only with conjectures in the form of equalities, but alsohwgébnjectures in the form of in-
equalities over geometric quantities. Within this methatt@CAD, geometric expressions
are transformed by the lemmas used in the basic area metkloa @njecture (equivalent
to the original one) only in terms of the free points of the stomction is obtained. That
new expression (with two sides linked by one of the relatianar <) is tested for validity
by Collins’ algorithm for quantifier elimination in real ded fields by cylindrical algebraic
decomposition [15].

Example 3.3 Let r1 be the radius of the circumcircle of a triangle ABC, and lgbe the
radius of the inscribed circle of the triangle. Then it hokthat r2 > 4r3 and this can be
proved by AreaCAE.

3.4 Applications

As other geometry theorem provers, the area method can feeredt applications in edu-

cation, mathematical software, computer-aided designpeter graphics, computer vision,
robotics, etc. [7], but also in formalisation projects sash-lyspeck which involves a lot of
geometric reasoning [25]. In this section a few existintheastraightforward applications,
of the method are described.

23 The statement can not be stated 2% 2r» because, using the geometric quantities of the area method,
only the square of an oriented distance can be expressed.



34 Jantic - Narboux - Quaresma

3.4.1 GeoThms

GeoThmé* is a web-based framework for exploring geometrical knogtethat integrates
dynamic geometry tools, automatic theorem provers, ancpasitry of geometric con-
structions, figures and proofs [53,55]. The GeoThms usersaaily use/browse through
existing geometrical content and build new contents.

The main motivation is to build and maintain a publicly asiele and widely used
Internet based framework for constructive geometry. ltlmmnsed for teaching and studying
geometry, but also as a major Internet repository for gedoagknowledge.
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Let ABC be a triangle such that AC=BC. D is a point on AC; E is a point on
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The dynamic geometry tools currently used within GeoThnes@&ELC [29] and Eu-
kleideg® [57], two widely used dynamic geometry tools. The automakesrem provers
used are the two theorem provers described in sections d@.3.2nboth based on the area
method, and two theorem provers based on algebraic metbifs [

GeoThms provides a web workbench that tightly integratestlentioned tools into a
single framework for constructive geometry.

The current collection (June 2010) of 176 problems was basilig the examples in [47,
51], and also from [6,9,11,12]. From those problems, 11limre realm of the area
method, 60 of them where coded in GCLC input format and tha arethod prover from
GCLC was capable of proving successfully 56 of them withi@$6f CPU time, in 4 other
problems the prover was stopped before reaching its goalavbrage CPU time was 3.5s,
with a maximum of 69.98s and a minimum of less them 0.001s.Adgbased prover was
capable of proving successfully 66 problems (code@ag format), under the time limit of
600s, in 6 other problems the prover was unable to complet@rbof. The average CPU
time was 18.23s, with a maximum of 213.71s and a minimum &%.0n the set of prob-
lems in which both implementations where tested the GCL@prwas significantly more
efficient than theCogbased provet®

24 http://hilbert.mat.uc.pt/GeoThms
25 http://www.eukleides.org/
26 All the CPU times where taken in a Penti@# CPU 3.00GHz, 2GB RAM, GNU/Linux
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A more extensive set of problems should be built to have &batiderstanding of the
capabilities of both implementations, this is being donthimithe projects GeoThms and
TGTP?

3.4.2 Automatic Verification of Regular Constructions

Some geometry tools (e.dzukleides GCLC) have a dual view of a given geometric con-
struction — its description in a custom formal language am@alised version, within the
graphical interface. Other tools (e.Gaeometer’'s Sketchpa@abri) do not have, at least in
an explicit form, a formal language for geometric consinrg and instead the user does not
describe a construction in abstract terms but “draws” ingia pre-defined set of geometry
operations. Generally, there are three types of consbruetirors:

— syntactic errors — only applicable for geometry tools withmfial languages and this
type of error is easily detected by the underlying proceasdreasily correctable by the
user. For the other family of geometry tools this type of edoesn’'t occur due to a
controlled environment where only syntactically corretti@ns are allowed.

— semantic errors —situations when, for a concrete set of gawral objects (usually
given in Cartesian plane), a construction step is not ptesdir instance, two identical
points do not determine a line. Such an error will be dealt login(if not all) geometry
tools for a given fixed set of points. However, that error itedted by an argument
relevant only for the given instance of the construction el question whether the
construction step is always impossible or it is not possilolly in the given special case
is left open.

— deductive errors —when a construction step is geometyicaisound, e.g., there is
never an intersection of two parallel lines in Euclideanrgetyy. A formal argument
that a construction step is always impossible can only beiged by geometry tools
that incorporate geometry theorem provers.

GCLC has a built-in mechanism (using GCLCprover) for chegkf a construction step
isillegal, i.e., if it is always impossible [30].

Example 3.4 Example 85 from the bodechanical Geometry Theorem Proviftg will
be used to illustrate the mechanism for automatic veriftcatf regular constructions built
into GCLC. Using GCLC, the illustration given in Figure 3.8rcbe generated.

If the code contains the intersection of lines AD and MN, G®ilCreport that such
intersection cannot be determined (using floating-poimhbars and the concrete set, given
by the user, of the free points in the Cartesian plane). Fenth will invoke the built-in
theorem prover and prove the conjecture that the two linessA@MN are parallel (hence,
for any choice of free points, the intersection of lines A &N cannot be determined).

As far as we are aware of, the system for automdastiictivaesting whether a construc-
tion is illegal, an important feature that enhances thealidaature of dynamic geometry
tools, that is built into GCLC is the only such system. A samiinechanism is available in
JGEX when a user tries to perform an illegal construction steg,tbol may report that it
is not possible to perform the step, but it does not provideocaffor that argument. The
geometry tooCinderelladoes not allow illegal construction steps to be performemvéier
the justification is not based on deductive but on probatulieasoning [37].

27 nttp://hilbert.mat.uc.pt/TGTP/



36 Jantic - Narboux - Quaresma

Fig. 3.3 Example 85 from the booklechanical Geometry Theorem Proving

3.4.3 Computing Geometric Expressions

Within Theoremathe area method machinery is used for computing expressmolv-
ing geometric quantities relative to a given constructfeor. the given expression, all con-
structed points are eliminated and the expression is diexgblisimilarly as in the basic
method [58].

Example 3.5 Let A, B and C be arbitrary points and let r be an arbitrary nuenilet D
be the intersection of the line through B that is parallel ©© And the line through C that
is parallel to AB. Let Abe the point that divides CD in the ratib: r(r — 1) and let B
be the point that divides DA in the ratib: r(r — 1). Finally, let X be the intersection of
the lines AAand BB. The goal is to find the ratio of the area of the triangle ABC &nel
quadrilateral ABCD.

The tool implemented within Theorema, based on the areaoteim compute that the

i 0 i 1-r
given ratio is equal tom.

Notice that the basic area method cprovethat the given ratio equalﬁﬁ, but
computingthe given ratio (without an expected result) requires solighitsmodifications of
the method®.

28 This extension of the method was originally described by thibars of the method [9].
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3.4.4 Discovering Geometry Properties

Within Theoremathe area method machinery is used for exploring geoméitrmafig-
urations and discovering geometry properties [58]. Thehorkts based on a systematic
generation of all geometric expressions representingdstieg properties relative to a con-
struction (collinear points, congruent segments, pdrate perpendicular lines, triangles
with the same area) and then analysing which of these piepentight be unknown so far
i.e., not present in an available knowledge base. Stantorg & knowledge base that speci-
fies some constructions and properties, a range of integetsteorems can be automatically
obtained. These obtained theorems can be added to the kigsuase and the exploration
may continue without recomputing the results already oleii For testing generated prop-
erties, the area method is used, but other proving methodseased as well.

4 Contributions

In this paper we gave a detailed account of the area methodesmudibed all existing imple-
mentation that we are aware of and their wider contexts. ab®unt can serve as a basis
for a straightforward implementation of the method. In &ddito that, this paper brings the
following original contributions:

— We gave an axiom system that serve as a basis for the methextemsion of the axiom
system given by the authors of the method [9] (Section 2.2.2)

— We made formal proofs, within the proof assist&aig (in a contribution accompanying
this paper), of all the lemmas needed for the correctnesheofrtethod not only for
affine geometry (already described before [43]), but alsdefaclidean geometry [47].
Thanks to the formalisation, we ensured the correctnedktbdemmas required by the
method, with an exception of one lemma that, as publishduiotiginal description [9],
contained an error.

— We provided detailed traditional proofs in the Hilbertistgystem (in a technical report
accompanying this paper [56]) of all the lemmas and filledome details missing in
the original descriptions.

— We made explicit the elimination procedure for all casebidiog the special cases such
as£Y (Section 2.4.1).

— We made explicit dealing with the case split occurring in soofi the lemmas (Sec-
tion 2.5.1).

— We made explicit the uniformization phase which consistfriding normal forms for
geometric quantities (Section 2.5.2).

— We made explicit the formulae to be used for dealing with fremts (Section 2.5.4).

— We made an explicit description of the simplification pheBection 2.5.3).

— We made explicit the algorithm for deciding equality betwéwo rational expressions
in independent parameters (Section 2.5.5).

— We highlighted the fact that a special case needs to be studiien eliminatingr in
(Section 3.2.5).

gl

5 Conclusions

In this paper we gave a detailed description of the area mdethte of the most significant
methods for automated theorem proving in geometry, inttedby Chou , Gao and Zhang
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in 1993. The method produces proofs that are often conciddaman-readable, and can
efficiently prove many non-trivial theorems. The descdptof the method given here can
serve as a detailed tutorial on the method (first of that kisgfficient for understanding and
implementing it in a straightforward manner.

Within this paper we also showed how the area method can lwessfully integrated
with other mathematical tools.

We, the authors of the paper, independently made two of timegrated implemen-
tations and in this paper we presented our combined reguitegperiences related to the
method and its applications.

Acknowledgements We thank the anonymous referees for the very helpful commerttsediirst version of
this paper.
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