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Abstract

The problem of measuring similarity of graph nodes is important in a range of practical problems.

There is a number of proposed measures, usually based on iterative calculation of similarity and the

principle that two nodes are as similar as their neighbors are. In our work, we propose one novel method

of that sort, with a refined concept of similarity of nodes that involves matching their neighbors. We

prove convergence of the proposed method and show that it has some additional desirable properties

that, to our knowledge, the existing methods lack. In addition, we construct a measure of similarity of

whole graphs based on the similarities of nodes. We illustrate the proposed method on several specific

problems and empirically compare it to other methods.

Keywords: graph node similarity, graph similarity, similarity measure

1 Introduction

Many or most data analysis techniques are designed for data that are represented by vectors of numbers.

However, this kind of representation often leads to loss of structural information contained in the original

data, while preserving structural information may be essential in some applications. This requires a richer

problem representation and corresponding data analysis techniques. For example, in many practical domains,

structural information in the data can be represented using graphs.

∗This work was partially supported by Serbian Ministry of Science grant 174021 and by SNF grant SCOPES IZ73Z0 127979/1.
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Similarity measures between objects are of central importance for various data analysis techniques. The

same holds for the special case of similarity measures related to graphs. A number of measures for such

purposes have been proposed. In this paper, we focus on iterative methods for calculation of similarity of

graph nodes (some of them allowing extension to similarity of whole graphs) [9, 7, 1, 21]. These methods have

been successfully applied in several domains like adequate ranking of query results [9], synonym extraction

[1], database structure matching [13], construction of phylogenetic trees [7], analysis of social networks [12],

etc.

In this paper, we try to identify desirable properties not present in the existing methods for measuring

similarities of graph nodes. We propose a refinement of the notion of similarity of two nodes which leads to

a new method for measuring similarities of graph nodes and similarities of graphs. We prove convergence of

the proposed method and show that it has some additional desirable properties that, to our knowledge, the

existing methods lack.

We implemented the proposed method and evaluated it on four problems in order to illustrate that our

method can capture the notion of similarity useful for practical problems. The problems we used are finding

a subgraph of a graph that is isomorphic to some other given graph, measuring similarity of friends in a social

network, classification of Boolean formulae based on their underlying graph structure, and classification of

engineering symbols.

The rest of the paper is organized as follows. In Section 2, we present the preliminaries used in this paper.

Existing methods are described and analyzed in Section 3. In Section 4 we present our new method — the

method of neighbor matching and prove its properties. Results of experimental evaluation and comparison

to other methods are given in Section 5. In Section 6, we draw final conclusions and give some directions of

the future work.

2 Preliminaries

A directed graph G = (V,E) is defined by its set of nodes V and its set of edges E. There is an edge between

two nodes i and j if (i, j) ∈ E. For the edge e = (i, j), the source node is the node i, and the terminating

node is the node j. We denote them respectively with s(e) and t(e). We say that the node i is an in-neighbor

of node j and that node j is an out-neighbor of the node i if (i, j) ∈ E. An in-degree id(i) of the node i is

the number of in-neighbors of i, and an out-degree od(i) of the node i is the number of out-neighbors of i.

A degree d(i) of the node i is the sum of in-degree and out-degree of i. Two graphs are isomorphic if there
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exists a bijection f : VA → VB , such that (i, j) ∈ EA if and only if (f(i), f(j)) ∈ EB . An isomorphism of a

graph G to itself is called automorphism. A colored graph is a graph in which each node is assigned a color.

For colored graphs, the definition of isomorphism additionally requests that nodes i and f(i) have the same

color. A random Erdős–Rényi graph Gn,p is a graph with n nodes in which each two nodes share an edge

with probability p [4]. A graph GB is an induced subgraph of a graph GA if VB ⊆ VA and for each pair of

nodes i, j ∈ VB it holds (i, j) ∈ EB if and only if (i, j) ∈ EA.

The similarity measure s is a function s : D1 × D2 → R where D1 and D2 are possibly equal sets of

objects. A higher value of similarity measure should imply a higher similarity in some intuitive sense. Choice

of a similarity measure to be used in some context is often guided by its usefulness in practice.

Similarity measure over the nodes of two graphs can be represented by a similarity matrix X = [xij ] of

dimension |VA| × |VB | with the element xij denoting a similarity of the nodes i ∈ VA and j ∈ VB .

Let A and B be two finite sets of arbitrary elements. A matching of elements of sets A and B is a set of

pairs M = {(i, j)|i ∈ A, j ∈ B} such that no element of one set is paired with more than one element of the

other set. For the matching M we define enumeration functions f : {1, 2, . . . k} → A and g : {1, 2, . . . k} → B

such that M = {(f(l), g(l))|l = 1, 2, . . . , k} where k = |M |. Let w(a, b) be a function assigning weights to

pairs of elements a ∈ A and b ∈ B. The weight of a matching is the sum of weights assigned to the pairs of

elements from the matching. The goal of the assignment problem is to find a matching of elements of A and

B of the highest weight (if two sets are of different cardinalities, some elements of the larger set will not have

corresponding elements in the smaller set). The assignment problem is usually solved by the well-known

Hungarian algorithm of complexity O(mn2) where m = max(|A|, |B|) and n = min(|A|, |B|) [11]. There are

more efficient algorithms, such as one due to Edmonds and Karp of complexity O(mn logn) [3] and even

more efficient one, due to Fredman and Tarjan of complexity O(mn+ n2 log n) [5].

3 Existing Methods for Measuring Graph Node Similarity

In this section we briefly describe relevant iterative methods for measuring similarity of graph nodes and we

try to identify some desirable properties that they lack.

Assume that two directed graphs GA = (VA, EA) and GB = (VB , EB) are given. Iterative methods

calculate similarity of nodes of these two graphs by repeatedly refining the initial estimate of similarity using

some update rule of form [xk+1
ij ] ← f([xk

ij ]). Iterations are performed until some termination condition is

met. At the end, the similarity matrix X = [xij ] is produced. Different rules for update of similarity of two
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nodes are proposed. They usually include summing all the similarities between the neighbors of first node

and the neighbors of the second node.

One of the first influential iterative approaches is due to Kleinberg [9], further generalized by Blondel et

al. [1]. In the method of Blondel et al. the update rule for xij in step k + 1 is given by

xk+1
ij ←

∑
(p,i)∈EA,(q,j)∈EB

xk
pq +

∑
(i,p)∈EA,(j,q)∈EB

xk
pq.

The similarity matrix X is normalized by X ← X/∥X∥2 after each step.

The earlier approach by Melnik et al. [13] can be seen as a more general version of of this method where

the similarities between neighbor nodes xk
pq are weighted.

The method of Blondel et al. was modified by Zager and Verghese [21] to account for similarity of the

edges too. The update rule for the edge similarity matrix Y = [yuv], where u ∈ EA and v ∈ EB , is given by

yk+1
uv ← xk

s(u)s(v) + xk
t(u)t(v).

The update rule for similarity of nodes is then given in terms of similarities of the edges

xk+1
ij ←

∑
t(u)=i,t(v)=j

ykuv +
∑

s(u)=i,s(v)=j

ykuv.

Matrix normalization of the similarity scores is applied in this approach too.

The approach by Heymans and Singh [7] is somewhat different and more complex than the described

methods, and we only briefly mention its most important aspects. In order to estimate similarity in each

iteration, similarity terms and dissimilarity terms are calculated, based on the similarity scores of the previous

iteration. These terms average the similarities of the in-neighbor and similarities of the out-neighbors.

Similarity terms are calculated both for the original graphs and their complements. Dissimilarity terms

are calculated using one graph and the complement of the other, and vice versa. Dissimilarity terms are

subtracted from similarity terms to obtain new estimate of similarity scores. The matrix normalization is

performed after each iteration.

There are approaches that are designed for measuring similarity only between the nodes of the same

graph [8, 12], but we do not discuss these methods. Also, there are various approaches that deal with the

similarity of graphs, but do not consider the similarity of their nodes (e.g., [17, 18]).

The described methods lack some desirable and natural properties. Of course, not all the methods lack
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all the listed properties.

If the graph is compared to itself, each node should be most similar to itself This is a natural

property, expected for all similarity measures. Nevertheless, for all mentioned methods it is easy to construct

graphs for which there is a node which is more similar to some other node of the same graph than to itself.

This can easily occur, for instance, in methods where the update rule consists of simple summation of

similarities of neighbor nodes. This results in nodes of higher degree having more terms in the summation

and hence, higher similarity with other nodes [2].

Similarity scores should have a fixed range, the similarity of a node to itself always taking

the maximal value It is customary for similarity measures in general (not only for similarity measures

related to graphs) to have a fixed range (e.g., from 0 to 1 or from -1 to 1). Without the loss of generality, we

will assume the range [0, 1]. Also, similarity of each object to itself should be 1. These properties facilitate

intuitive understanding of similarity scores. Well-known examples of measures for which these requirements

are fulfilled are cosine, correlation coefficient, Jaccard coefficient, etc. However, the mentioned methods for

calculating graph node similarity lack this property. When the similarity scores are calculated for the nodes

of the same graph, the similarity score of one node compared to itself can be different from the similarity

score of some other node compared to itself.

It is reasonable to make even stricter requirement: if two graphs GA and GB are isomorphic, f : VA → VB

being one such isomorphism, the similarity score xif(i) should be 1 for all i ∈ VA.

A similarity score should be meaningful in itself Due to the normalization of the similarity matrix,

one similarity score xij can change only if other similarity scores change accordingly. This makes additional

interdependence between similarity scores that is not a result of the topology of two graphs. It actually

means that similarity scores can only reflect similarity of nodes of two graphs relative to the similarities of

other nodes of the graphs. We can not conclude if two nodes are similar, but only if one pair of nodes is

more similar than some other pair of nodes.

As an example, consider the following special case. Suppose that all the nodes of one graph are equally

similar to all the nodes of the second graph. In a normalized matrix it is impossible that all the similarity

scores are equal to 0, or that all the similarity scores are equal to 1. Because of the normalization constraint,

we can not differentiate between all possible degrees of similarity. All we can say is that the nodes of one

graph are equally similar to all the nodes of the second graph, but not how much.
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It would be good if similarity score is meaningful in itself and not only relative to other scores in the

similarity matrix.

The lack of this property, also makes it harder to use similarity scores of the nodes to construct the

similarity measure of whole graphs. Heymans and Singh [7] were able to achieve this because they use

similarity scores that can be negative (as the consequence of subtracting dissimilarity scores that they use),

but as discussed in the previous special case, it would not be possible with other methods.

If two nodes do not have ingoing or outgoing edges, they should be considered similar To our

knowledge, this property is present only in the method of Heymans and Singh. We believe that concepts of

in-similarity and out-similarity should be recognized. Moreover, in-similarity and out-similarity should be 1

if there are no in-neighbors or out-neighbors.

4 Method of Neighbor Matching

In this section we refine the notion of node similarity. Based on that refinement, we describe a new method

(we call this method the method of neighbor matching) for measuring similarity of nodes of graphs and prove

its properties. Then, we define a measure of similarity of whole graphs based on the similarities of their

nodes.

4.1 Notion of Similarity of Graph Nodes

In the existing methods, the calculation of similarity xij is based on adding or averaging the similarities

between all the neighbors of node i ∈ VA and all the neighbors of node j ∈ VB. We propose a modification

to that approach, illustrated by the following intuition. One perceives his two hands to be very similar, not

because all the fingers of the left hand are very similar to all the fingers of the right hand, but due to the

property that each finger of the left hand corresponds to one finger of the right hand that is very similar to

it. By analogy, the concept of similarity can be refined — two nodes i ∈ VA and j ∈ VB are considered to

be similar if neighbor nodes of i can be matched to similar neighbor nodes of j (hence the name neighbor

matching).
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4.2 Measuring Similarity of Graph Nodes

As in other related methods, similarity scores are calculated as the fixed point of the iterative procedure

defined by some update rule. In our method, we will differentiate between in-similarity sin and out-similarity

sout and will give them equal weights. In order to calculate in-similarity, the matching of in-neighbors with

maximal sum of similarities (as described in Section 2) has to be constructed, and analogously for out-

similarity. More formally, the update rule is given by

xk+1
ij ← sk+1

in (i, j) + sk+1
out (i, j)

2
.

In and out similarities are defined by

sk+1
in (i, j)← 1

min

nin∑
l=1

xk
fin
ij

(l)gin
ij

(l) sk+1
out (i, j)←

1

mout

nout∑
l=1

xk
fout
ij

(l)gout
ij

(l) (1)

min = max(id(i), id(j)) mout = max(od(i), od(j))

nin = min(id(i), id(j)) nout = min(od(i), od(j))

where functions f in
ij and ginij are the enumeration functions of the optimal matching of in-neighbors of nodes

i and j with weight function w(a, b) = xk
ab, and analogously for fout

ij and goutij . In the equation 1, we define

0
0 to be 1. This convention ensures that the similarity of nodes with no in or no out neighbors is recognized.

If there is a difference in the number of in or out neighbors, that difference is penalized when calculating

corresponding similarities since min and mout are greater than the number of terms in the summation (which

are each less or equal to 1 as we show later).

This method is easily extended to colored graphs. By definition, we can set xk
ij to be 0 if nodes i and j

are of different color.

As in other iterative methods, one has to choose the initial similarity scores x0
ij . In our method, we set

x0
ij = 1 for all i ∈ EA, j ∈ EB . Though the choice may seem arbitrary, note that in the first iteration it

leads to intuitive results.

s1in =
min(id(i), id(j))

max(id(i), id(j))
s1out =

min(od(i), od(j))

max(od(i), d(j))

If, for instance, a node i has 3 in-neighbors and a node j has 5 in-neighbors, the in-similarity of nodes i and

j in the first iteration will be 3
5 . We find that to be an intuitive choice if we do not know anything about the
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similarities of the neighbor nodes — in that case we can only reason about the number of neighbor nodes.

The termination condition is maxij |xk
ij −xk−1

ij | < ε for some chosen precision ε. Alternative termination

condition could be used too.

Note that our method has computationally more complex update rule compared to previous methods.

Other methods include summation of total id(i)id(j) terms for in-neighbors and total od(i)od(j) terms for

out-neighbors. In our method, we have to solve the assignment problem for id(i) and id(j) in-neighbors

and for od(i) and od(j) out-neighbors. Since efficient algorithms for the assignment problem (mentioned in

Section 3) exist, and the graphs in most real world problems are reasonably sparse, the need for solving

assignment problem, should not be a significant problem in practice. Of course, if the graphs are dense,

the method will be more demanding, especially as the graphs get larger. However, as it will be discussed in

Section 5, in the case of dense graphs, one could deal with complement graphs (that are sparse) instead of

the original ones, and so reduce the computation time.

Example 1. In order to illustrate our method, we applied it on example graphs (shown in Figure 1) used by

Zager [21]. The similarity scores for the nodes of the graphs are presented in Table 1.

The proposed method converges, as stated by the following theorem.

Theorem 1. For any choice of graphs GA and GB, for each pair of nodes i ∈ VA and j ∈ VB, there exists

xij = limk→∞ xk
ij with a value in range [0, 1].

Proof. For any i ∈ VA and j ∈ VB , the corresponding sequence (xk
ij)

∞
k=0 is nonincreasing. We will prove this

by induction on the number of iterations k.

The initial similarity score x0
ij for some i and j is equal to 1. In the first iteration, the weights of optimal

matchings when calculating in and out similarities are equal nin and nout respectively, since the weight of

the matching of any two nodes is 1. Since min ≥ nin and mout ≥ nout it holds s1in(i, j) = nin

min
≤ 1 and

s1out(i, j) =
nout

mout
≤ 1, and the same holds for x1

ij , being the arithmetic mean of the two values. This proves

that in the first step, the similarity scores cannot grow. This proves the base of induction.

Suppose that up to the step k, the sequence of scores xk
ij is nonincreasing, meaning that xk

ij ≤ xk−1
ij . This

actually states that the weights (xk
ij) of matching of any two nodes when calculating sk+1

in and sk+1
out are not

greater than the weights (xk−1
ij ) when calculating skin and skout. We use this observation to show sk+1

in ≤ skin.

The reasoning for inequality sk+1
out ≤ skout is analogous. Let f t

ij and gtij be the enumeration functions of the

optimal matching of in-neighbors of nodes i ∈ VA and j ∈ VB in iteration t. Note that for a pair of nodes
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these functions can differ from iteration to iteration. We prove that the following inequalities hold

nin∑
l=1

xk
fk+1
ij

(l)gk+1
ij

(l)
≤

nin∑
l=1

xk−1

fk+1
ij

(l)gk+1
ij

(l)
≤

nin∑
l=1

xk−1
fk
ij
(l)gk

ij
(l)

The first inequality holds by inductive hypothesis that states that xk
ij ≤ xk−1

ij . As for the second inequality,

the optimal matching of in-neighbors of node i to in-neighbors of node j in iteration k, need not be the same

as the optimal matching of those in-neighbors in iteration k+1. Since the matching defined by enumeration

functions fk
ij and gkij is optimal in iteration k, its weight can not be smaller than than the weight of the

matching defined by enumeration functions fk+1
ij and gk+1

ij which is exactly what the second inequality states.

Dividing all three expressions by min, we conclude s
k+1
in (i, j) ≤ skin(i, j). The same holds for out-similarities.

Consequently, we have xk+1
ij ≤ xk

ij . This proves the inductive step. Hence, the sequence of similarity scores

(xk
ij)

∞
k=0 is nonincreasing.

By induction on the number of iterations we prove that in all the iterations, all the similarity scores

are nonnegative. In the first iteration, all the scores are nonnegative. In each subsequent iteration, the

update rule consists of averaging some of the scores from the previous iteration. By averaging nonnegative

values one cannot obtain a negative value, so each sequence of similarity scores is nonnegative. Hence, the

sequences are bounded from below by zero. Nonincreasing sequence bounded from below must have a limit,

so xij = limk→∞ xk
ij exists. Since the sequence is nonincreasing and x0

ij = 1, the limit can not be greater

than 1. Also, since all the elements are nonnegative, the limit also has to be nonnegative. This proves the

theorem.

Simple examples can be produced to show that the bounding interval [0, 1] is tight.

Important property of the similarity for isomorphic graphs is established by the following theorem.

Theorem 2. For two isomorphic graphs GA and GB, let f : VA → VB be an isomorphism between two

graphs. For each node i ∈ VA, it holds that xif(i) = 1.

Proof. We show that xk
if(i) = 1 for all i ∈ VA and all k ≥ 0 by induction on the number of iterations k.

The initial value x0
if(i) is equal to 1 for all i ∈ VA, by definition. This is the base of the induction. Let

k > 0, assume xk
if(i) = 1 for all i ∈ VA, and consider xk+1

if(i). Since f is an isomorphism of two graphs, nodes i

and f(i) must have the same number of in-neighbors and out-neighbors. Hence, min = nin and mout = nout.

It suffices to prove that the weights of the optimal matchings when calculating in and out similarities are

equal to nin and nout respectively. We discuss in-similarity first. Since f is the isomorphism, it maps all the
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in-neighbors of node i to in-neighbors of node f(i). The weights xaf(a) of matching each in-neighbor a of i

to in-neighbor f(a) of f(i) are equal to 1 by the inductive hypothesis, thus being maximal. So the matching

of each in-neighbor a of i to in-neighbor f(a) of f(i) is optimal. Since there is nin in-neighbors, the weight

of the optimal matching of in-neighbors is nin. Analogous reasoning is used to show that the weight of the

optimal matching of out-neighbors is equal to nout. Therefore, both in and out similarity of i and f(i) in

step k + 1 are equal to 1 for all i ∈ VA and so, the similarity score xk+1
if(i) is also equal to 1 for all i ∈ VA.

Since xk
if(i) = 1 for all k ≥ 0, and i ∈ VA, the limit xif(i) is also 1 for all i ∈ VA.

In the case GA = GB where f is the trivial automorphism f(i) = i for all i ∈ VA, this theorem implies a

simple corollary.

Corollary 1. For any graph GA and each node i ∈ VA, it holds xii = 1.

It is easy to check that the proven theorems hold for colored graphs too.

By the above statements, the neighbor matching method fulfills the first two requirements listed in Section

3. The matrix normalization is avoided and it is easy to produce examples of graphs with all the similarity

values being 0 or all the similarity values being 1. Similarity of nodes due to lack of in or out neighbors

is recognized because in that case in or out similarity will be equal to 1. So, we can conclude that all the

requirements listed in Section 3 are met.

4.3 Measuring Similarity of Graphs

The method of neighbor matching can be used to construct a similarity measure of two graphs in the way of

Heymans and Singh [7]. When the similarity scores xij for graphs GA and GB are computed, the optimal

matching between their nodes can be found by solving the assignment problem between the nodes from VA

and VB with the weight of matching two nodes being the similarity of the nodes. Let f and g be enumeration

functions for the optimal matching and n = min(|VA|, |VB |). Then, similarity of graphs GA and GB can be

computed as

s(GA, GB) =
1

n

n∑
l=1

xf(l)g(l). (2)

By Theorem 1, the value of the similarity measure s is bounded in the interval [0, 1]. As a simple corollary

of theorem 2, if GA and GB are isomorphic, it holds s(GA, GB) = 1.

Of course, different similarity measures for graphs could be constructed based on the similarities of their

nodes. For instance, the sum of weights of the optimal matching could be divided by max(|VA|, |VB |) instead
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of min(|VA|, |VB|). Such a choice would penalize the difference in size when comparing two graphs. Another

interesting choice would be to take the average of all the values in the similarity matrix. In such a case,

graphs with greater number of automorphisms would be considered to be more self-similar than graphs

without automorphisms. In the rest of the paper we will use the measure defined by equation 2.

5 Experimental Evaluation

We implemented the method of neighbor matching1 and the methods of Zager and Verghese and of Heymans

and Singh in C++.2 For solving the assignment problem, we used an available implementation of the

Hungarian algorithm [10]. Nevertheless, more efficient algorithms (mentioned in Section 2) exist.

In this section, we describe four experiments we performed to test the performance of our method. The

first two are concerned with node similarities, and the second two with graph similarities.

5.1 Evaluation of Node Similarity

We will evaluate node similarity on two problems. The first is isomorphic subgraph matching, and the second

is measurement of similarity of friends in a social network.

5.1.1 Isomorphic Subgraph Matching

Here we present a slightly modified experiment from Zager and Verghese [21] which we use to compare several

methods for computing node similarity.

We will consider a problem of finding a subgraph of a graph A that is isomorphic to some other graph

B. We will use random Erdős–Rényi graphs Gn,p. The experiment consists of generating a random graph A

of size n and randomly selecting m ≤ n nodes which induce a subgraph B of A. The similarity of nodes of

A and B is calculated, the assignment problem between the nodes of A and B is solved, and the matching

of the nodes is obtained. Then, it is checked if graph B is isomorphic to the subgraph of A induced by the

obtained matching.

For n = 15, this procedure is repeated 500 times for each pair of m = 8, 9, . . . , 15 and p = 0.2, 0.4, 0.6, 0.8,

and the accuracy of the method (the percentage of correct guesses) is calculated for each pair. Required

1The source code of the implementation of the neighbor matching method is available from http://www.matf.bg.ac.rs/

~nikolic/software.html.
2The C++ implementation of the method of Heymans and Singh was obtained by a simple transformation of Java imple-

mentation kindly provided by prof. Ambuj Singh.
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numeric precision when calculating similarities for all the methods was ε = 10−4, and the same termination

condition was used — maxij |xk
ij − xk−1

ij | < ε.

The methods compared were the method of neighbor matching (NM), the one of Heymans and Singh

(HS), and the one of Zager and Verghese (ZV). It was noted that NM and ZV methods are heavily influenced

by density parameter p both in matching performance and speed, while the HS method is not. We believe

that it is due to the fact that HS method is considering both the input graphs and their complements. As

suggested in Section 4, we made a modification to other two methods which we call “the complement trick”

— for dense graphs (p > 0.5) the similarity of nodes is measured for the complement graphs instead of the

original input graphs.3 Note that this does not mean that the similarity scores computed for the complement

graphs would be close to the similarity scores computed for the original graphs. We only expect that their

computation would be less expensive and that the obtained results would be better. That might even be a

rationale for including the complement trick in the definition of the method. This modification introduced

methods NM* and ZV*. For completeness of the evaluation, we introduced HS*, too.

For each method, for each value of parameter p, we present one plot that shows the percentage of successes

in isomorphic subgraph matching for each value of m. The plots are presented in figures 2,3, and 4. It can be

noted that the accuracy rises much slower for in the case of ZV and ZV* than in the case of other methods.

NM* obviously performs the best. In Table 2, for each method, we present the overall accuracy in the

experiment and the total time of the experiment.

The complement trick obviously improved NM and ZV methods. As expected, it did not affect the HS

method. For NM* and ZV* methods, apart from boosting the accuracy, the computation time is significantly

reduced. For NMmethod, this modification reduces the computation time for solving the assignment problem

in NM update rule, since it reduces the number of nodes to be matched in the cases when this number can

be large (dense graphs).

One can observe that the performance of all the methods rapidly decreases as the subgraph size decreases.

Probable cause of this behavior is that if a graph B is given, which is small, and A contains an induced

subgraph A′ isomorphic to B, the number of the edges of A that connect the nodes of A′ to the nodes of

A that are not in A′ is significant in comparison with the number of the edges of A′, so the topology of B

becomes less discernible in A as B gets smaller.

3The complement trick could be given an intuitive rationale. For instance, consider one trying to reason about similarity
of two sparse graphs based on their adjacency matrices. Probably, one would spot ones in the matrices and analyze their
arrangements in some way. If the graphs were dense, it would be much easier to spot zeroes and reason about them.
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5.1.2 Similarity of Friends in a Social Network

It could be expected that the nodes of a social network that correspond to friends are more similar than

the nodes that do not correspond to friends. We analyzed a network dataset describing email exchange

between the members of University Rovira i Virgili [6]. Each member represents a node in the graph G.

There is an edge between two nodes of G if the person corresponding to the first node sent an email to the

person corresponding to the second node. The graph contains 1133 nodes and 10903 edges. We calculated

similarities for all pairs of nodes of the graph using the same methods as for isomorphic subgraph matching

problem. As an evaluation metric we used the probability of a randomly chosen pair of friends having greater

similarity than a randomly chosen pair of persons that are not friends. We estimated this probability using

Wilcoxon statistic [19]. The probability for NM method is 0.87 and the computation time is 1719s. The

probability for ZV method is 0.75 and the computation time is 850s. For HS method the computation did

not finish even in 10h. As before, NM performs better than ZV, but requires more time.

5.2 Evaluation of Graph Similarity

We will evaluate graph similarity derived from node similarities on two problems. The first is classification

of boolean formulae, and the second is classification of engineering symbols. Both are used to show that our

method can capture a meaningful similarity of graphs in real world problems. The first one is also used to

evaluate the scalability of the proposed method.

5.2.1 The Classification of Boolean Formulae

Various important practical problems can be modeled in Boolean logic including problems in electronic

design automation, software and hardware verification, scheduling, timetabling, artificial intelligence, and

other domains. Each instance of the problem is represented by a Boolean formula. Classification of Boolean

formulae has been investigated in order to automatically tune SAT solvers (systems for checking the sat-

isfiability of Boolean formulae) that is a practically important and challenging problem. A very reliable

approach to Boolean formulae classification is based on measuring the distances between the formulae [14].

In that approach, in order to compute the distance between the formulae, they are represented by numerical

vectors of some syntactical features, that can be computed for each formula. However, Boolean formulae

have a natural variable-clause graph representation [15] that could be used for their classification.

We performed the classification of Boolean formulae using our similarity measure for graphs on their

graph representation. We used 149 structured instances from SAT competition 2002 benchmark set (which
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is one of the standard benchmarks sets for SAT).4 Most of the formulae had up to 1000 nodes, but 25 of

them were larger (up to 5280 nodes). Formulae were grouped in 9 classes corresponding to the problems

the formulae originate from. Graphs corresponding to the formulae had from 122 to 5280 nodes. Differences

in graph size of order of magnitude were present within each class too. The classification was performed

using the k nearest neighbors algorithm with leave one out evaluation procedure — for each formula F , its

graph similarity to the remaining formulae was computed, and the set N(k) of k most similar formulae was

determined. Formula F is classified to the class that has the most representatives in the set N(k). For the

evaluation of the classification performance, we measured the accuracy of the classification — number of

correctly classified formulae divided by the total number of formulae being classified.

Total time used for the experiment which involved 11026 computations of graph similarity is 102 hours

and the average graph similarity computation time is 33s. The best accuracy of the classification was

93% for k = 7. The best accuracy for a domain specific approach from [14] on the same set is 96% for

k = 1. Somewhat more accurate, the domain specific approach is based on long lasting research in the field

[15, 20, 14]. It is interesting to see that the performance of the general approach, not designed specifically

for this purpose, is good.

A very interesting remark concerning this experiment is that the difference in size of the compared graphs

did not influence the adequateness of the similarity measure. This kind of robustness might be interesting

for practical applications.

Since the number of nodes of graphs used in this example varies significantly, we can use it to analyze the

scalability of the method with respect to the graph size. The dependence of computation time on the size

of the graphs is given in Figure 5. One can see that the dependence of computation time on the product of

graph sizes is clearly linear (which is expected due to the size of the similarity matrix). In the figure, several

linear dependencies corresponding to comparisons of Boolean formulae from various classes can be spotted.

The amount of time that can be spent on similarity calculation varies from application to application, but

from given figure, one can form an impression of the way the proposed method scales with the size of the

given graphs.

4The benchmarks are available from http://www.satcompetition.org.
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5.2.2 Classification of Engineering Symbols

The GREC dataset from IAM Graph Database Repository5, originaly used in Symbol Recognition Contest

in 20056, contains graphs extracted from distorted images of symbols used in architectural and electronic

drawings [16]. The dataset contains 1100 graphs uniformly distributed in 22 classes split in training, valida-

tion and test set containing 286, 286, and 528 instances respectively. Maximal number of nodes in all graphs

is 24. For classification, k nearest neighbors algorithm with proposed graph similarity measure was used.

The total time used for the experiment is 3876s, and the average graph similarity computation time is 0.01s.

The accuracy for k = 1 is 92%. On the other hand, the approach based on graph edit distance achieves

95.5% accuracy [16]. As in the previous example, the proposed method is not the best, but its performance

is good.

6 Conclusions and Future Work

We proposed a refined notion of similarity of graph nodes, and based on that refinement we developed a new

iterative method for measuring similarity of nodes of two graphs. This method was extended to a method

for measuring similarity of whole graphs. We proved the convergence of the method and showed that it has

several desirable properties (listed in Section 3) that, to our knowledge, the existing methods lack.

We implemented the method and evaluated the implementation on four test problems. On two test

problems involving node similarities, we confirmed that the proposed method performs better than other

methods. On other two problems involving graph similarity, the proposed method was not the best, but its

performance was good. It is confirmed that the proposed similarity measure is able to capture a meaningful

similarity in real world problems. The method showed to be robust to differences in graph size. The

performance on dense graphs can be significantly boosted by measuring the similarity of nodes of complement

graphs. This modification can significantly reduce the running time of the method.

An obvious limitation of the method is that the computation time is linear with respect to the product of

graph sizes due to the size of the similarity matrix. Also, as for many other similarity measures, it is not easy

to understand the magnitude of the similarity value. For instance, it would be hard for a domain expert to

choose a threshold on this similarity measure to make a yes-or-no decision whether two nodes or two graphs

are similar, and one would probably have to choose such a threshold experimentally using the available data.

One should also be aware that in some domains small changes to the graph structure, or changes that do

5http://oslab.ch/fki/databases/iam-graph-database
6http://symbcontestgrec05.loria.fr
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not affect the graph structure can have a large impact on the phenomenon of interest. An example could

be that different conformations of a chemical compound can have different chemical properties. This is an

inherent limitation for application of topology-based similarity measures.

As for the future work, we are planning applications of the neighbor matching method in real-world

problems in bioinformatics, text classification, and other domains suitable for graph similarity techniques.
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[14] M. Nikolić, F. Marić, P. Janičić, Instance-based selection of policies for SAT solvers, in: Theory and

Applications of Satisfiability Testing - SAT 2009, Springer, 2009, pp. 326-340.

[15] E. Nudelman, K. L. Brown, H. H. Hoos, A. Devkar, Y. Shoham, Understanging random SAT: beyond the

clauses-to-variables ratio, in: Principle and Practice of Constraint Programming - CP 2004, Springer,

2004, pp. 438-452.

[16] K. Riesen, H. Bunke, IAM Graph Database Repository for Graph Based Pattern Recognition and

Machine Learning, in: Proceedings of the 2008 Joint IAPR International Workshop on Structural,

Syntactic, and Statistical Pattern Recognition, Springer-Verlag, 2008, pp. 287-297.

[17] K. Riesen, H. Bunke, Approximate graph edit distance computation by means of bipartite graph match-

ing, Image and Vision Computing 27 (2009) 950–959.

[18] N. Shervashidze, S.V. N. Vishwanathan, T. Petri, K. Mehlhorn, K. Borgwardt, Efficient Graphlet Ker-

nels for Large Graph Comparison, in: 12th International Conference on Artificial Intelligence and

Statistics, Society for Artificial Intelligence and Statistics, 2009, pp. 488-495.

[19] F. Wilcoxon, Individual Comparisons by Ranking Methods, Biometrics Bulletin 1 (1945), pp. 80-83.

17



[20] L. Xu, F. Hutter, H. H. Hoos, K. Leyton-Brown, SATzilla: portfolio-based algorithm selection for SAT,

Journal of Artificial Intelligence Research 32 (2008) 565-606.

[21] L. Zager, G. Verghese, Graph similarity scoring and matching, Applied Mathematics Letters 21 (2008)

86-94.

18



Table 1
Similarity scores for graphs given in Figure 1, cal-
culated using the method of neighbor matching for
ε = 10−4.

1B 2B 3B 4B 5B 6B
1A 0.682 0.100 0.597 0.200 0.000 0.000
2A 0.000 0.364 0.045 0.195 0.400 0.000
3A 0.000 0.000 0.000 0.091 0.091 0.700
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Table 2
Overall accuracy and time needed for the experiment, for each
method used.

NM NM* HS HS* ZV ZV*
Accuracy 27.3 37.8 17.5 17.5 13.9 15.0
Time (s) 2062 838 11511 11730 349 230
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Figure 1: Two example graphs given by Zager [21].

Figure 2: Accuracy of isomorphic subgraph matching for NM and NM* methods.

Figure 3: Accuracy of isomorphic subgraph matching for HS and HS* methods.

Figure 4: Accuracy of isomorphic subgraph matching for ZV and ZV* methods.

Figure 5: Dependence of similarity computation time on the product of graph sizes.
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Figure 1: Two example graphs given by Zager [21].
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Figure 2: Accuracy of isomorphic subgraph matching for NM and NM* methods.
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Figure 3: Accuracy of isomorphic subgraph matching for HS and HS* methods.
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Figure 4: Accuracy of isomorphic subgraph matching for ZV and ZV* methods.
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Figure 5: Dependence of similarity computation time on the product of graph sizes.
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