
CDCL-Based Abstract State Transition System
for Coherent Logic?

Mladen Nikolić and Predrag Janičić

Faculty of Mathematics, University of Belgrade,
Belgrade, Studentski Trg 16, Serbia
{nikolic, janicic}@matf.bg.ac.rs

Abstract. We present a new, CDCL-based approach for automated the-
orem proving in coherent logic — an expressive semi-decidable fragment
of first-order logic that provides potential for obtaining human readable
and machine verifiable proofs. The approach is described by means of
an abstract state transition system, inspired by existing transition sys-
tems for SAT and represents its faithful lifting to coherent logic. The
presented transition system includes techniques from which CDCL SAT
solvers benefited the most (backjumping and lemma learning), but also
allows generation of human readable proofs. In contrast to other ap-
proaches to theorem proving in coherent logic, reasoning involved need
not to be ground. We prove key properties of the system, primarily that
the system yields a semidecision procedure for coherent logic. As a con-
sequence, the semidecidability of another fragment of first order logic
which is a proper superset of coherent logic is also proven.

Keywords: coherent logic, CDCL SAT solving, abstract state transition sys-
tems, machine verifiable proofs, readable proofs

1 Introduction

Coherent logic (CL) is a fragment of first-order logic that involves formulae of
the form: p1(~v)∧. . .∧pn(~v)⇒ ∃~y Q1(~v, ~y)∨. . .∨∃~y Qm(~v, ~y) which are implicitly
universally quantified and where 0 ≤ n, 0 ≤ m, ~v denotes a sequence of variables
v1, v2, . . . , vk, pi (for 1 ≤ i ≤ n) denote atomic formulae (involving some of the
variables from ~v), ~y denotes a sequence of variables y1, y2, . . . , yl, and Qj denote
conjunctions of atomic formulae (involving some of the variables from ~v and ~y).
If n = 0, then the p1(~v) ∧ . . . ∧ pn(~v) part is assumed to be >, and if m = 0,
then the ∃~y Q1(~v, ~y) ∨ . . . ∨ ∃~y Qm(~v, ~y) part is assumed to be ⊥. There are no
function symbols with arity greater than 0.

CL was initially defined by Skolem and in recent years it gained new attention
[2, 8, 4, 18]. It allows certain existential quantification, so it is more expressive
than the resolution logic. In contrast to the resolution method, the conjecture

? This work was partially supported by the Serbian Ministry of Science grant 174021
and by SNF grant SCOPES IZ73Z0 127979/1.

being proved is kept unchanged and is directly proved (refutation, Skolemization
and transformation to clausal form are not used). Hence, proofs in CL are natural
and intuitive. In addition, reasoning is constructive and proof objects (verifiable
by a proof assistant) can be easily obtained [2, 18]. The proof objects in CL
also give readable proofs, which is significant for many applications (e.g., in
formalizing mathematics and in education). A number of theories and theorems
can be formulated directly and simply in CL.

CL is semi-decidable and there are several semi-decision procedures and cor-
responding theorem provers implemented for it and for similar logics [9, 18, 2, 15].
However, most (although not all) of them are rather simple forward-chaining pro-
cedures that can hardly tackle complex conjectures. For such tasks, CL needs
more powerful proving engines. We believe that such engine can be based on
the dominating CDCL (conflict-driven clause-learning based) approach for SAT
solving [5]. A problem with CDCL-based systems is that, in general, they use
clausal form, refutation, and Skolemization, so the obtained proofs are not read-
able (since they are not given in terms of the original signature). In this paper
we present one such approach for CL, given in terms of abstract state transition
systems, inspired by a transition system for SAT [10]. Our system is a general-
ization of the system for SAT and can be used as a base both for SAT solving
and CL solving. An important distinguishing feature of our system is non-ground
reasoning which promises large benefits in practice. Also, we take advantage of
nature of CL and design our system so that readable proofs (for instance, in a
natural language form or in the Isabelle/Isar form [19]) can be generated. The
presented approach, is motivated by and built on the three strong pillars:

Suitability of CL. Coherent logic has a number of good features and is suit-
able for many automation tasks. It is very expressive and gives potential for
obtaining both readable and machine verifiable proofs.

Practical advances in SAT. Over the last decade, a huge progress has been
made in SAT solving: a number of high-level algorithmic and low-level im-
plementation features have been developed, so modern SAT solvers can deal
with industrial instances with hundreds of thousands of clauses. Our ap-
proach should enable the transfer of these advances to coherent logic.

Theoretical advances in SAT. SAT solvers have been described, precisely
and suitably for rigorous mathematical analysis, in terms of abstract state
transition systems. Their correctness has been proved, first informally [13,
10] and then formally (using a proof assistant) [11, 12]. These results helped
a separation of different concepts used in SAT solvers (often intermixed in
typical optimized implementations) and a deeper understanding of operation
of SAT solvers. Ideas from transition systems for SAT were used in designing
and describing our transition system and for proving its properties (it gives
a decision procedure for SAT and a semidecision procedure for CL).

Overview of the paper. The rest of the paper is organized as follows: in Section
2 we give some relevant background information on CL, SAT, and transition
systems for SAT; in Section 3 we present our abstract state transition system

for CL and in Section 4 we outline its soundness and completeness proofs. In
Section 5 we briefly present the mechanism for generating readable proofs based
on the presented transition system. In Section 6 we discuss related work, and in
Section 7 we draw final conclusions and discuss further work.

2 Background

Propositional logic, First order logic, SAT. We assume the standard notions of
propositional and first-order logic (FOL). Propositional logic can be considered
as a first-order logic theory with each propositional variable corresponding to a
0-arity predicate symbol. This convention enables considering both propositional
logic and coherent logic within the context of first-order logic. For instance, the
SAT problem can be defined in the context of FOL, in the following way: SAT is
a problem of deciding if it holds Γ |= ⊥ (i.e., whether Γ is unsatisfiable), where
Γ is a set of clauses over a signature L with no function symbols and only with
predicate symbols of arity 0. The SAT problem is decidable and is NP-complete.

Abstract State Transition Systems for SAT. The transition system (by Krstić
and Goel [10]) given in Figure 1 and referred to as the SAT system hereafter, is
used for checking if a set of propositional clauses is satisfiable. It is a terminating,
sound and complete (under a certain restrictions) [12]: for any initial state, the
system (subject to certain limitations to forget and restart) terminates and then,
if C differs from no cflct, then the current formula F is satisfiable (and so is
the initial formula F0) and the current trail M is its model and, otherwise, the
current formula F is unsatisfiable (and so is the initial formula F0).

Coherent logic. The definition of a coherent logic formula is given in Section
1. Coherent logic does not involve negation and the reasoning involved is intu-
itionistic. For an atomic formula A, ¬A can be represented in the form A⇒ ⊥,
but this translation is not applicable in a general case (for arbitrary formula).
In order to reason about negated atomic formulae, for every predicate symbol
p, typically a new predicate symbol p is introduced that stands for p and the
following additional axioms are used [17]: ∀~x(p(~x)∨ p(~x)), ∀~x(p(~x)∧ p(~x)⇒ ⊥).

The validity problem in CL is a problem of deciding if it holds Γ |= Φ, where
Γ is a set of coherent formulae, Φ is a coherent formula, and |= denotes the se-
mantical consequence relation (Γ |= Φ holds if Φ is true in all non-empty Tarskian
models for Γ). The validity problem in CL is undecidable, but semidecidable [3].

Any FOL formula can be translated into a CL formula with preserved validity
[17]. However, this translation may rely on steps that involve classical logic.

Typically, along a proof of a CL formula, there are new (fresh) constants,
witnesses, added to the current signature. The term constant is used both for
the constant symbols from the initial signature and for the witnesses.

3 Abstract State Transition System for CL

In this section we present an abstract state transition system for CL, a base for
a semi-decision procedure for CL. It extends and modifies the transition system

Decide:
l ∈ L l, l /∈M

M := M ld

UnitPropag:
l ∨ l1 ∨ . . . ∨ lk ∈ F l1, . . . , lk ∈M l, l /∈M

M := M li

Conflict:
C = no cflct l1 ∨ . . . ∨ lk ∈ F l1, . . . , lk ∈M

C := {l1, . . . , lk}
Explain:
l ∈ C l ∨ l1 ∨ . . . ∨ lk ∈ F l1, . . . , lk ≺ l

C := C ∪ {l1, . . . , lk} \ {l}
Learn:
C = {l1, . . . , lk} l1 ∨ . . . ∨ lk /∈ F

F := F ∪ {l1 ∨ . . . ∨ lk}
Backjump:
C = {l, l1, . . . , lk} l ∨ l1 ∨ . . . ∨ lk ∈ F level l > m ≥ level li

C := no cflct M := Mm l
i

Forget:
C = no cflct c ∈ F F \ c |= c

F := F \ c
Restart:
C = no cflct

M := M [0]

Fig. 1. Transition system for SAT solving by Krstić and Goel (li ≺ lj denotes that
the literal li precedes lj in M , ld denotes a decision literal, li an implied literal, level l
denotes the decision level of a literal l in M , and Mm denotes the prefix of M up to
the level m)

for SAT given in Section 1. The two system share the same spirit and the rules
from the SAT system have their counterparts, but typically in a more involved
form. In the rest of the paper, the following form of an implicitly universally
quantified formula will be considered:

∀~x p1(~v, ~x) ∧ . . . ∧ ∀~x pn(~v, ~x)⇒ ∃~y q1(~v, ~y) ∨ . . . ∨ ∃~y qm(~v, ~y)

where atoms pi involve some of the variables ~v and ~x and atoms qi involve
some of the variables from ~v and ~y. In the rest of the text, by coherent formula,
we mean a formula of this form. Note that there are two differences from the
original coherent form. The first one is that qi are atoms and not conjunctions
of atoms. This restriction does not decrease the expressiveness, since there is a
straightforward transformation from the original to this restricted form, since
each conjunction can be attributed a new predicate symbol of an appropriate
arity, which is then linked, by additional axioms, to that conjunction. Using these
axioms, the introduced predicates can be eliminated from the object-level proofs.
The second difference from the coherent form is that universal quantifiers may
appear in the lefthand side of the formula. This extension can be easily avoided
if necessary, but it has some beneficial consequences that we discuss later.

In the rest of the paper we, standardly, do not differentiate between the
formulae equal up to renaming of variables. To simplify the presentation, the
set of elements of a list L will also be denoted L and the empty list will also
be denoted ∅. In addition, the set of quantified atoms in the conjunction P
or disjunction Q will also be denoted P or Q. Hence, for a coherent formula
P ⇒ Q where P is a conjunction of quantified atomic formulae and Q is a
disjunction of quantified atomic formulae, P and Q can be also considered as
sets. If P = {p1, . . . , pn} andQ = {q1, . . . , qn}, ∀~xP will denote {∀~xp1, . . . ,∀~xpn}
and ∃~yQ will mean {∃~yq1, . . . ,∃~yqn}. Substitutions will be denoted λ, σ, σ′, . . .

Definition 1 (Signature and conjecture). Let V be a countable set of vari-
ables and let L = (Σ∞, Π, ar) be a signature such that Σ∞ = {ci | i ∈ N \ {0}},
where for each i = 1, . . . it holds ar(ci) = 0, and Π is a finite set of predi-
cates with defined arities. Let no cflct be a special symbol not appearing in the
signature.

Let there be given a coherent theory T , i.e., a finite set of coherent axioms
AX , over a signature (ΣT , Π, ar) where ΣT = {c1, . . . , ck} ⊆ Σ∞ and k ≥ 0,
and a conjecture ∀~xH0(~v, ~x)⇒ G0(~v) (over the same signature), where H0(~v, ~x)
is h01(~v, ~x) ∧ . . . ∧ h0m(~v, ~x) and G0(~v) is ∃~y g01(~v, ~y) ∨ . . . ∨ ∃~y g0n(~v, ~y) and h0i
and g0i are atomic formulae. Let ∀~xH denote ∀~xH0(~v, ~x)λ, let G denote G0(~v)λ,
for a ground substitution λ over ~v where all constants appearing in λ belong to
Σ∞ \ΣT and are pairwise distinct.

In our system, H will serve as an initial assumption and an element from G
should be reached.

In SAT solving, the model is built incrementally by asserting literals. When
both the positive and the corresponding negative literal are asserted the search
branch is closed and the backtrack ensues. We define relevant elementary for-
mulae that will take this role in our system.

Definition 2 (Quantified literal). Positive quantified literal or a quantified
atom is a ground atom or p(~v) or ∃~y p(~y) where p is a predicate symbol and
∃~y p(~y) is closed. Formulae ∀~x p(~v, ~x) and ∃~y p(~v, ~y) are extended quantified
atoms or eq-atoms. A formula (∀~x p(~v, ~x))⇒ ⊥ is a negative quantified literal.
A quantified literal is a positive or negative quantified literal. An extended quan-
tified literal or eq-literal is an extended quantified atom or a negative quantified
literal. Instead of l⇒ ⊥, we may write l.

Example 1. In this and the following examples, constants c1, c2, . . . will be re-
ferred to as a, b, We will assume Π = {p, q, r, s} where ar(p) = ar(q) =
ar(r) = 2 and ar(s) = 1. Formulae p(a, b), p(a, x), and ∃y p(a, y) are quantified
atoms. Formulae ∀x p(a, x), ∀x p(v, x), and ∃y p(x, y) are extended quantified
atoms (due to the presence of universal quantifiers in first two cases, and due
to the presence of the free variable x in the third example). Formulae p(a, b),
p(a, x), p(x, y), and ∀x p(x, y) are negative quantified literals.

Definition 3 (State). A state is a 6-tuple (Σ,Γ,M, C1, C2, `), where Σ is a
finite list of elements from Σ∞, Γ is a finite list of coherent formulae over V and

(Σ,Π, ar), M is a list of (pairwise distinct) eq-literals (called a trail) over V and
(Σ,Π, ar), C1 ⇒ C2 is a formula called a conflict implication, and ` is the index
of last introduced constant. An initial state is a state S0 = (Σ0,AX ,H,G, ∅, ∅, n),
where Σ0 is the union of constants from H∪G and ΣT (if Σ0 is empty a constant
from Σ∞ is added in it) and n is the maximal index of constants from Σ0.

Intuitively, the role of the state components is as follows: Σ stores the current
set of constants, Γ stores the axioms and learnt lemmas, M stores the current
set of inferred or assumed eq-literals. The inferred conclusions are logical con-
sequences of the axioms along with assumed quantified literals. The formula
C1 ⇒ C2 is used in a process called conflict analysis.

Definition 4 (Decision levels). The elements of lists M and Σ are divided
into decision levels. The elements of different decision levels are separated by the
symbol |.

The prefix of a list L that includes exactly the elements of the first m decision
levels is denoted Lm.

For an element e, Lxme denotes a list obtained from L by inserting e at the
end of the decision level m of L if e /∈ L, and L if e ∈ L. If the number m is
omitted, the last level is assumed.

We write e ∈m L if e belongs to the m-th level of L. If ei ∈mi L for i =
1, . . . , k where k > 0, and if m = maximi, then we write {e1, . . . , ek} ⊆m L. If
k = 0, we write ∅ ⊆0 L.

We introduce relation denoting precedence of eq-literals in the trail (≺).

Definition 5 (Relation ≺). We write l ≺ l′ in some state if it holds M =
M1 l M2 l

′M3 in that state, where any of Mi (i=1,2,3) can be empty. For a set
S, we write S ≺ l′ if it holds l ≺ l′ for each l ∈ S.

Example 2. LetM = [p(a, b), q(x, y), r(x, y)]. Then p(a, b) ≺ q(x, y). It also holds
{p(a, b), q(x, y)} ≺ r(x, y).

Next, we define the relations of entailment of eq-literals (
), and validity of
eq-literal with respect to the current trail (↑).

Definition 6 (Relations
 and ↑). For eq-literals l and l′ we write l
 l′ if
there is a substitution λ such that lλ = l′ and we write l
 ∀~xl′ if l
 l′ and we
write l
 ∃~y l′ if l
 l′[~x 7→ ~t] for some vector of variables and/or constants ~t.
We write S
 S′ if there exist l ∈ S and l′ ∈ S′ such that l
 l′. If some of these
sets is singleton, we write its only element instead of it. We write l ↑m if there
is a function m such that m(l) ∈M and m(l)
 l.

Example 3. It holds p(x, y)
 p(a, y), p(x, y)
 ∀x p(x, b), and p(x, b)
 ∃y∃z p(y, z).
Consequently, if it holds p(x, b) ∈M , then it holds ∃y∃z p(y, z) ↑m for any func-
tion m such that m(∃y∃z p(y, z)) = p(x, b).

The following two definitions introduce the conflict between eq-literals (×),
and conflict of a formula with the current trail (↓). Note that the term conflict is
not used in the strict sense of contradiction, but it plays the same role the proper
conflict plays in the SAT solving — it signals that backtracking is needed.

Definition 7 (Relation ×). We write p(~x,~t)×λ ∀~x′p(~x′,~t′) (or ∀~x′p(~x′,~t′)×λ
p(~x,~t)) if ~tλ = ~t′λ. We write ∃y p(~y,~t) ×λ p(~x′,~t′) (or p(~x′,~t′) ×λ ∃y p(~y,~t)) if
~tλ = ~t′λ. We write l × l′ if it holds l ×λ l′ for some λ.

Example 4. It holds p(a, b) × p(x, y), p(x, y) × ∀x p(x, b), p(x, b) × ∀x p(x, b),
and ∃x p(x, b)× p(x, y).

Definition 8 (Relation ↓). We write l ↓mλ if there is a function m such that
m(l) ∈ M and l ×λ m(l), and we write l ↓ if it holds l ↓mλ for some m and λ.
For a formula P ⇒ Q, a substitution λ, and a partial function m : P ∪Q →M
we write P ⇒ Q ↓mλ if for each l ∈ P it holds m(l)
 lλ, and for each l ∈ Q it
holds either m(l)×λ l or lλ
 G (in the latter case m(l) is not defined). We write
P ⇒ Q ↓ if it holds P ⇒ Q ↓mλ for some m and λ. The function m is called the
conflict mapping and the set m(P ∪Q) is called the conflict set for P ⇒ Q. We
denote {l′ ∈ P ∪Q | m(l′) = l} by m−1(l).

Example 5. Let G = ∃x q(a, x) ∨ ∃y q(y, b) and M = [p(x, b), r(a, b), s(a)]. It
holds (p(x, y)⇒ r(x, y)) ↓mλ where m(p(x, y)) = p(x, b) and m(r(x, y)) = r(a, b)
and λ = [x 7→ a, y 7→ b]. It also holds (p(x, y) ⇒ r(x, y) ∨ q(x, b)) ↓mλ for the
same m and λ (since q(x, b)λ
 G).

Negations of
, ↑, and ↓ are denoted 1, ↑� , and ↓6 respectively.
For a fixed set of predicates, the set of all quantified atoms l over the signature

Σ for which it holds l 1 G is denoted A(Σ). The restriction l 1 G on the set
A(Σ) is imposed for technical convenience.

The conflict mapping can map several eq-atoms from a formula to the same
quantified literal on the trail. We define the merging of these eq-atoms.

Definition 9 (Relation ⇒λ). Let l1 = ∀~x p(t1, . . . , tn) and l2 = ∀~x′ p(t′1, . . . , t′n)
such that ~x ∩ ~x′ = ∅. Let J = {i | ti /∈ ~x ∧ t′i /∈ ~x′}. We write {l1, l2} ⇒λ

∀~x′′ p(w1, . . . , wn) if:

– there is a most general unifier λ for all pairs (ti, t
′
i) (i ∈ J);

– ui = tiλ and u′i = t′iλ are not constants if i /∈ J ;
– wi = ui = u′i for i ∈ J and wi = uiu

′
i for i /∈ J where uiu

′
i is a new variable

and uiu
′
i ∈ ~x′′.

For n > 2, we write {l1, . . . , ln}⇒λ l if {l1, l2}⇒µ l
′ and {l′, l3, . . . , ln}⇒ν l

and λ = µν. If λ is not relevant it can be omitted. For eq-literals ∃~y p(t1, . . . , tn)
and ∃~y′ p(t′1, . . . , t′n), relation ⇒λ is defined by analogy.

Example 6. Denote S = {∀x∀y φ(x, x, y, y, u, v, w, c),∀z φ(z, z, z, z, z, z, t, t)}.
It holds S ⇒[w 7→c,t7→c] ∀xz∀yz∀uz∀vz φ(xz, xz, yz, yz, uz, vz, c, c) where c is a
constant. It also holds {ψ(u, u, v), ψ(v, w, u)}⇒[u 7→v,w 7→v] ψ(v, v, v). It does not
hold {∀x ψ(x, u, u),∀y∀z ψ(y, z, c)}⇒λ l for any l and any λ.

Definition 10 (CL transition system). For a given (fixed) signature L =
(Σ∞, Π, ar), a CL transition system is a system of rules1 given in Figure 2.
Each rule, when applicable, maps one state to another.

S
r−→ S′ denotes that state S′ can be obtained from state S by the rule r.

S → S′ denotes that S
r−→ S′ holds for some rule r. A sequence of states Si such

that Si → Si+1 is called a chain. A chain is maximal if it is finite and no rule
is applicable in its last state or if it is infinite.

Definition 11 (Final states). An accepting state is a state S in which it holds
C2 6= {no cflct} and C1 ⇒ C2 ↓m where m(C1 ∪ C2) ⊆ H. In that case, we write
AX `CL ∀~xH0(~v, ~x) ⇒ G0(~v). A rejecting state is a state S for which there is
no state S′ such that S → S′ and S is not an accepting state. A state is a final
state if it is an accepting state or a rejecting state.

Note that the condition m(C1 ∪ C2) ⊆0 M would suffice for the purpose of
deciding validity. However, the stronger condition is suitable for purposes of
object-level proof generation. We give informal explanations of the rules and
some examples.
Decide: This rule makes an assumption. An assumption can be a quantified
atom that is not redundant nor contradictory with respect to the current trail
(for instance, if there is a quantified literal s(y) on the trail, then the rule is not
applicable for s(c), ∃x s(x)). Within this step, in M and Σ it is denoted that a
new level begins (that depends on the decision made).
Intro: This rule eliminates existential quantifiers and introduces new constant
symbols as witnesses. For example, if M = [p(a, b),∃y q(x, y)], and Σ = a, b, the
rule can insert a fresh constant symbol c into Σ and q(a, c) (or q(b, c)) into M .
Unit propagate left/right: If the removal of an atom from a formula results
in a conflict of that formula and the trail, that eq-literal can be propagated in
positive or negative form depending on the side of the implication it belongs to.
If p(x, y) ∈ M , a formula s(x)⇒ ∃y p(x, y) can propagate s(x). If p(a, y) ∈ M ,
s(a) can be propagated. Note that sometimes it is not the propagated eq-literal
lλ that is logically implied, but the eq-literal (l⇒ G)λ. Still, we propagate lλ for
technical convenience. This does not jeopardize the soundness of our system nor
the generation of object-level proofs. Also, note that the propagated eq-literal is
inserted into M at the lowest level such that all objects it was derived from are
below it.2

Branch end: If P ⇒ Q ↓ holds, then the current assumptions are either incon-
sistent or imply G, so backtracking is needed. The process of conflict analysis3

begins, which aims at finding a lemma that can be used to end subsequent
branches that can be ended by derivation analogous to the current one.

1 The explanations of the rules (we recommend the reader to read them in parallel
with the definitions of the rules) and a detailed execution example follow.

2 This corresponds to exhaustive unit propagation in SAT solving.
3 The term (somewhat misleading in this context) comes from the SAT solving, where

the goal is to reach a contradiction (i.e., a conflict). In CL, the goal is to reach a
contradiction or the conclusions of a given target formula.

Decide:
l ∈ A(Σ) l ↑� l ↓6
M := M |l Σ := Σ|

Intro:
∃~y l ∈M (∃~y l)λ ∈ A(Σ) lλλ′ ↑� for any λ′

M := Mxl[y1 7→ c`+1, . . . , yk 7→ c`+k]λ Σ := Σxc`+1, . . . , c`+k ` := `+ k
Unit propagate left:
P ∪ {l} ⇒ Q ∈n1 Γ P ⇒ Q ↓mλ m(P ∪Q) ⊆n2 M lλ ↑� lλ ↓6

M := Mxmax(n1,n2)lλ

Unit propagate right:
P ⇒ Q∪ {l} ∈n1 Γ P ⇒ Q ↓mλ m(P ∪Q)n2 ⊆M lλ ↑� lλ ↓6

M := Mxmax(n1,n2)lλ

Branch end:
C2 = {no cflct} P ⇒ Q ∈ Γ P ⇒ Q ↓

C1 := P C2 := Q
Explain left ∀:

C1 ⇒ C2 ↓m l ∈ m(C1) S = m−1(l) S ⇒ ∀~xp(~v, ~x)

P ⇒ Q∪ {p(~v′, ~x′)} ∈ Γ P ⇒ Q ↓m
′

m′(P ∪Q) ≺ l ∀~xp(~v, ~x)×λ p(~v′, ~x′)
C1 := (∀~x′P ∪ (C1 \ S))λ C2 := (∃~x′Q∪ C2)λ

Explain left ∃:
C1 ⇒ C2 ↓m l ∈ m(C1) S = m−1(l) S ⇒σ p(~v, ~x)

P ⇒ Q∪ {∃~x′p(~v′, ~x′)} ∈ Γ P ⇒ Q ↓m
′

m′(P ∪Q) ≺ l p(~v, ~x)×λ ∃~x′p(~v′, ~x′)
C1 := (P ∪ ∀~x(C1σ \ Sσ))λ C2 := (Q∪ ∃~x(C2σ))λ

Explain right ∀:
C1 ⇒ C2 ↓m l ∈ m(C2) S = m−1(l) S ⇒σ p(~v, ~x)

{∀~x′p(~v′, ~x′)} ∪ P ⇒ Q ∈ Γ P ⇒ Q ↓m
′

m′(P ∪Q) ≺ l p(~v, ~x)×λ ∀~x′p(~v′, ~x′)
C1 := (P ∪ ∀~x(C1σ))λ C2 := (Q∪ ∃~x(C2σ \ Sσ))λ

Explain right ∃:
C1 ⇒ C2 ↓m l ∈ m(C2) S = m−1(l) S ⇒ ∃~xp(~v, ~x)

{p(~v′, ~x′)} ∪ P ⇒ Q ∈ Γ P ⇒ Q ↓m
′

m′(P ∪Q) ≺ l ∃~xp(~v, ~x)×λ p(~v′, ~x′)
C1 := (∀~x′P ∪ C1)λ C2 := (∃~x′Q∪ (C2 \ S))λ

Learn:
C2 6= {no cflct} C1 ⇒ C2 /∈ Γ

Γ := ΓxC1 ⇒ C2
Backjump:

C1 ⇒ C2 ∈ Γ C1 ⇒ C2 ↓m l ∈ m(C1) S = m−1(l) C1 \ S ⇒ C2 ↓m
′

λ

m′ ⊆ m m′(C1 \ S ∪ C2) ⊆n M l ∈n
′
M n ≤ t < n′ Sλ⇒ l′

M := M txnl
′

Σ := Σt C1 := ∅ C2 := {no cflct}

Fig. 2. Abstract state transition system for CL

Explain left/right ∀/∃: These rules perform conflict analysis by performing a
kind of generalized resolution on the conflict implication and formulae from Γ
that (could have) propagated quantified literals in the conflict set. The resolution
can be described by following schematic rules, but in the Explain rules it is
adjusted for resolving several literals at once when several eq-atoms from conflict

implication correspond to the same quantified literal in the conflict set.

P ⇒ Q ∪ {∃~yp(~x, ~y)} {p(~x′, ~y′)} ∪ P′ ⇒ Q′

(P ∪ ∀~y′P′ ⇒ Q∪ ∃~y′Q′)λ

P ⇒ Q ∪ {p(~x, ~y)} {∀~x′p(~x′, ~y′)} ∪ P′ ⇒ Q′

(∀~xP ∪ P′ ⇒ ∃~xQ ∪Q′)σ

where λ is the most general unifier for ~x and ~x′ and σ is the most general unifier
for ~y and ~y′. Notice that if length of ~y in the first case and ~x′ in the second case
is 0, the two rules are the same and in such case it is not important which one is
used. Suppose a conflict implication is p(x, y)∧q(x, y)⇒ r(x, y) and that there is
an axiom s(x)⇒ ∃y p(x, y). If the Explain left ∃ is applied to obtain a new con-
flict implication by resolving these two, s(x)∧∀y q(x, y)⇒ ∃y r(x, y) is obtained.
Now, suppose that the conflict implication is p(v, z) ∧ ∀x q(x, v) ∧ ∀x q(v, x)⇒
∃y r(z, y), where both q eq-atoms in its lefthand side correspond to the same
quantified atom in the conflict set, and that there is an axiom p(x, y)⇒ q(x, y).
If Explain left ∀ is applied, since it holds {∀x q(x, v),∀x q(v, x)}⇒ ∀u∀w q(u,w),
the new conflict implication is (∀v p(v, z) ∧ ∀x∀v p(x, v))⇒ ∃y r(z, y).
Learn: In the conflict analysis process, an implication C1 ⇒ C2 is derived. Since
it is a consequence of the axioms, it can be added to Γ as a learnt lemma.
Backjump: Since the conflict implication C1 ⇒ C2 is in conflict with M , some
of the quantified literals have to be removed from the trail, so backjumping is
performed. The level of the backjump is chosen so that only the quantified literal
l from the top level in the conflict set is removed. Also, since other quantified
literals from the conflict set are still present on the trail, a negative quantified
literal can be derived from C1 ⇒ C2 that prevents l from appearing on the trail
again. The last condition in the rule is concerned with the case when there are
several quantified literals in C1 that correspond to l.

Example 7. Let us illustrate the operation of the CL transition system on the
following (artificial) example. Let the axioms AX of T be (implicitly univer-
sally quantified) formulae: (Ax1) p(x, y) ∧ q(x, y) ∧ r(x, y) ⇒ ⊥, (Ax2) s(x) ⇒
∃y q(x, y), (Ax3) q(x, y)⇒ r(x, y), and (Ax4) s(x) ∨ q(y, y), and the conjecture
is ∀z p(x, z)⇒ ⊥.

The free variable of the conjecture is instantiated by fresh constant a: H =
p(a, z) and G = ⊥. The initial state is S0 = ({a},AX , p(a, z), ∅, ∅, 1). The details
of operation are given in the following table (note that the order in which the
rules are applied is not fixed). Since the last state is an accepting state, the
theorem has been proved.

Rule applied Σ Γ \ AX (lemmas) M C1 ⇒ C2

a ∅ p(a, z) ∅ ⇒ {no cflct}
Decide a| ∅ p(a, z)|s(a) ∅ ⇒ {no cflct}
U. p. right (Ax2) a| ∅ p(a, z)|s(a), ∃y q(a, y) ∅ ⇒ {no cflct}
Intro a|b ∅ p(a, z)|s(a), ∃y q(a, y), q(a, b) ∅ ⇒ {no cflct}
U. p. left (Ax1) a|b ∅ p(a, z)|s(a), ∃y q(a, y), q(a, b), r(a, b) ∅ ⇒ {no cflct}
Branch end (Ax3) a|b ∅ p(a, z)|s(a), ∃y q(a, y), q(a, b), r(a, b) q(x, y) ⇒ r(x, y)

Ex. right ∀/∃ (Ax1) a|b ∅ p(a, z)|s(a), ∃y q(a, y), q(a, b), r(a, b) p(x, y) ∧ q(x, y) ⇒ ⊥
Ex. left ∃ (Ax2) a|b ∅ p(a, z)|s(a), ∃y q(a, y), q(a, b), r(a, b) ∀y p(x, y) ∧ s(x) ⇒ ⊥
Learn a|b ∀y p(x, y) ∧ s(x) ⇒ ⊥ p(a, z)|s(a), ∃y q(a, y), q(a, b), r(a, b) ∀y p(x, y) ∧ s(x) ⇒ ⊥
Backjump a ∀y p(x, y) ∧ s(x) ⇒ ⊥ p(a, z), s(a) ∅ ⇒ {no cflct}
U. p. right (Ax4) a ∀y p(x, y) ∧ s(x) ⇒ ⊥ p(a, z), s(a), q(y, y) ∅ ⇒ {no cflct}
U. p. left (Ax1) a ∀y p(x, y) ∧ s(x) ⇒ ⊥ p(a, z), s(a), q(y, y), r(a, a) ∅ ⇒ {no cflct}
Branch end (Ax3) a ∀y p(x, y) ∧ s(x) ⇒ ⊥ p(a, z), s(a), q(y, y), r(a, a) q(x, y) ⇒ r(x, y)

Ex. right ∀/∃ (Ax1) a ∀y p(x, y) ∧ s(x) ⇒ ⊥ p(a, z), s(a), q(y, y), r(a, a) p(x, y) ∧ q(x, y) ⇒ ⊥
Ex. left (Ax4) a ∀y p(x, y) ∧ s(x) ⇒ ⊥ p(a, z), s(a), q(y, y), r(a, a) p(x, x) ⇒ s(z)

Ex. right (lemma) a ∀y p(x, y) ∧ s(x) ⇒ ⊥ p(a, z), s(a), q(y, y), r(a, a) p(x, x) ∧ ∀u p(z, u) ⇒ ⊥

As already noted, the fragment we are working with is syntactically broader
than CL due to the presence of universal quantifiers in the lefthand side of
the formulae. This extension allows more expressive lemma learning mechanism,
compliant with the use of (implicitly) universally quantified literals on the trail.
If one wants to stay within the original CL fragment, three conditions should be
fulfilled. The rule Decide should insert only closed quantified atoms on the trail.
The Explain rules should choose the literal l from the conflict set such that all
other literals from the set precede it on the trail and should resolve the conflict
implication with an axiom (or a learnt lemma) that was used to propagate (or
derive in the backjump) the literal l. Finally, if there are universal quantifiers in
the left side of the conflict implication, the Explain rules should be applied until
these quantifiers are removed.

4 Properties of CL Transition Systems

In this section we state the properties of the proposed system. Both soundness
and completeness are proven with respect to non-empty Tarskian models of the
axiom set. The relation |= denotes a logical consequence. Full proofs of the
theorems are available in the appendix.4

The soundness of the transition system given in Figure 2 is proven by showing
that if an accepting state is reached for a coherent formula Φ and a coherent
theory AX , then Φ is a logical consequence of AX .

Theorem 1 (Soundness). If it holds AX `CL ∀~xH0(~v, ~x) ⇒ G0(~v), then it
holds AX |= ∀~xH0(~v, ~x)⇒ G0(~v).

Proof outline. Since the accepting state can be reached, there is a conflict impli-
cation C1 ⇒ C2 and its corresponding resolution proof (in the sense of generalized
resolution defined by the Explain rules). Resolution steps defined by the Explain
rules are sound, and they involve only the axioms and previously learnt lemmas
(derived again from the axioms), so C1 ⇒ C2 is a logical consequence of AX . By
the definition of an accepting state, the conflict set S for C1 ⇒ C2 is a subset
of H. Moreover, by the definition of the conflict set, S contains positive quanti-
fied literals that satisfy all conjuncts from C1λ for some λ. Also, each disjunct
from C2 either implies G or corresponds to a negative quantified literal from S.
Since S ⊆ H and H has no negative quantified literals, in C2 there can be only
disjuncts that imply G. Therefore, C1 ⇒ G is a logical consequence of AX , so
(C1 ⇒ G)λ and (since G is closed) C1λ⇒ G are logical consequences of AX . If H
is true in some model of AX , then C1λ is true in that model, and consequently
G, too.

There are no guarantees that an arbitrary order of rule applications for a valid
formula leads to the accepting state. In order to ensure this property, that we
call strong completeness, we introduce the following restrictions to our system.

4 The appendix is available online from http://argo.matf.bg.ac.rs/cdclcl.pdf

We extend the state with a list of numbers ∆ and a number δ. So, a state is
a 8-tuple (Σ,Γ,M, C1, C2, `,∆, δ). In an initial state S0, it holds δ0 = `0 and
∆0 = δ0. Also, we add the limiter rule:

Limiter:
No other rules applicable δ < max{i | ci ∈ Σ}

δ := δ + 1

The indices of constants in the quantified atom l in Decide and Intro rule
have to be less than or equal to δ. The same holds for substitution λ in Backjump
and Unit propagate. Effects of the Decide rule are extended by ∆ := ∆| δ and
of the Backjump rule by ∆ := ∆m and δ := δ′ where δ′ is the last element of
∆m. Although weaker restriction can be made, we restrict the Explain rules to
choose the literal l from the conflict set such that all other literals from the set
precede it on the trail, and to resolve the conflict implication with an axiom (or a
learnt lemma) that was used to propagate (or derive in the backjump) the literal
l. These formulae (called reason clauses in SAT solving) can be easily found if
the record is kept when Unit propagation and Backjump are applied, as is the
common practice in SAT solving. Note that the new system is a restriction of
the original one, so the soundness arguments hold for the new system, too. The
strong completeness can be proven — that for a valid formula, any order of rule
applications (compliant with the imposed restrictions) will reach an accepting
state.

Theorem 2 (Strong completeness). If it holds AX |= ∀~xH0(~v, ~x)⇒ G0(~v),
then in each maximal chain S0 → . . . there exists an accepting state.

Proof outline. Suppose that there is no accepting state in the chain. Then, the
chain is either infinite or ends in a state in which no rule is applicable. Let L
be the set of all quantified atoms that are permanently kept on the trail after
some state in the chain. Consider a ground model M in which a ground atom
l is true if L
 l. If the premises of an axiom are true in M, it can be shown
that its conclusions are also true inM. So,M is a model for AX . H is trivially
true in M. Let us suppose that in some state S it holds g ↑ for some g ∈ G.
This indicates a branch end, and it can be shown that a backjump follows, after
which g ↑� holds. Hence G is not true in M. This shows that M is not a model
for (∀ ∗H)⇒ G even though it is a model for AX which is a contradiction with
the assumptions of the statement.

5 Generation of Readable Proofs

CDCL-based systems typically provide resolution refutation proofs that are not
readable because transformation to clausal form, refutation and Skolemization
are used. These proofs can, in principle, be transformed to forward chaining
proofs, but these proofs would be hardly readable (because of the transformed
axioms and function symbols non-existent in the original theory) and would
not resemble textbook proofs (e.g., in geometry). This is avoided in our system,

enabling generation of forward chaining proofs that can serve for simple building
of readable proofs (for instance, in a natural language form or in the Isabelle/Isar
form). We define a coherent forward chaining proof system (inspired by proof
system given in [17]) as follows. The axioms are Γ,⊥ ` Φ and Γ, φ ` Φ if φ
 Φ.
The rules are:

Γ,A,A⇒ B,B ` Φ
Γ,A,A⇒ B ` Φ

⇒ Γ,A ` Φ Γ,B ` Φ
Γ,A ∨B ` Φ ∨

Γ,A,Aσ ` Φ
Γ,A ` Φ Inst

Γ, p(~x),∀~x p(~x) ` Φ
Γ, p(~x) ` Φ ∀

Γ,∃~y p(~x, ~y), p(~a,~c) ` Φ
Γ,∃~y p(~x, ~y) ` Φ ∃

Γ, p(~a), p(~x) ` Φ
Γ, p(~a) ` Φ

Eigen

where in ∨ rule A and B share no free variables, in Inst, σ is an arbitrary
substitution over variables and constants from Σ∞, in ∃ rule ~a consists of con-
stants appearing in Γ and ∃~y p(~x, ~y) and ~c consists of fresh constants, and Eigen
can be applied to constants from ~a only in one branch of the proof and those
constants must have been introduced by Inst as fresh constants at the step in
which they first appear (this is a kind of eigenvariable condition). For a formula
∀~xH0(~v, ~x)⇒ G0(~v) the coherent forward chaining proof is a derivation tree for
AX ,H ` G.

Theorem 3. If AX `CL ∀~xH0(~v, ~x) ⇒ G0(~v), there exists a coherent forward
chaining proof for ∀~xH0(~v, ~x)⇒ G0(~v).

Proof outline. Since the accepting state can be reached, there is a conflict im-
plication C1 ⇒ C2 and its resolution proof built from the axioms. A proof of the
conjecture can be generated recursively from this resolution proof. Let resolv-
ing an eq-literal from the lefthand side of some F1 and an eq-literal from the
righthand side of some F2 yield a conflict implication C1 ⇒ C2. If Pr1 and Pr2
are forward chaining proofs for F1 and F2, then the proof of the conjecture is
constructed (roughly) by replacing non-contradiction leafs of Pr1 by Pr2 (with
appropriate renaming of fresh constants and free variables in Pr2).

A generated proof need not be axiom-level, but can involve learnt lemmas
with their proofs generated separately.

Example 8. We present the resolution tree for last derived C1 ⇒ C2, correspond-
ing to the example of system execution given in Example 7.

s(x) ∨ q(y, y)

q(x, y) ⇒ r(x, y) p(x, y) ∧ q(x, y) ∧ r(x, y) ⇒ ⊥

p(x, y) ∧ q(x, y) ⇒ ⊥

p(x, x) ⇒ s(z)

s(x) ⇒ ∃y q(x, y)

q(x, y) ⇒ r(x, y) p(x, y) ∧ q(x, y) ∧ r(x, y) ⇒ ⊥

p(x, y) ∧ q(x, y) ⇒ ⊥

∀y p(x, y) ∧ s(x) ⇒ ⊥

p(x, x) ∧ ∀u p(z, u) ⇒ ⊥

To make the notation more readable, in forward chaining proofs, we do not
write the hole context, but only the last derived fact. The forward chaining
proofs for p(x, x)⇒ s(z) and ∀y p(x, y) ∧ s(x)⇒ ⊥ are:

s(b) ` s(b)

s(x) ` s(b)
Inst

⊥ ` s(b)

r(a, a) ` s(b)
⇒ (Ax1)

q(a, a) ` s(b)
Inst

r(y, y) ` s(b)
Inst

q(y, y) ` s(b)
⇒ (Ax3)

AX , p(a, a) ` s(b)
∨

⊥ ` ⊥
p(a, b) ` ⊥

⇒ (Ax1)

r(a, b) ` ⊥
Inst

q(a, b) ` ⊥
⇒ (Ax3)

∃y q(a, y) ` ⊥
∃

AX , p(a, y), s(a) ` ⊥
⇒ (Ax2)

If we denote the first one by Pr1 and the second one by Pr2, and apply the rules
applied in Pr1 starting from the root AX , p(a, z) ` ⊥, we obtain Pr′1. Then
starting from each leaf of Pr′1 that did not end in contradiction, we can apply
all the rules applied in Pr2. The obtained proof is the proof for conjecture:

⊥ ` ⊥
p(a, b) ` ⊥

⇒ (Ax1)

r(a, b) ` ⊥
Inst

q(a, b) ` ⊥
⇒ (Ax3)

∃y q(a, y) ` ⊥
∃

s(a) ` ⊥
⇒ (Ax2)

s(x) ` ⊥
Inst

⊥ ` ⊥
p(a, a) ` ⊥

⇒ (Ax1)

r(a, a) ` ⊥
Inst

q(a, a) ` ⊥
Inst

r(y, y) ` ⊥
Inst

q(y, y) ` ⊥
⇒ (Ax3)

AX , p(a, z) ` ⊥
∨

A corresponding readable (Isar-style) proof would be as follows: Assume ∀z p(a, z).
With (Ax4), it holds ∀x s(x) or ∀y q(y, y). Assume ∀x s(x). From ∀x s(x), it
holds s(a). With (Ax2), it holds ∃y q(a, y). From ∃y q(a, y), obtain b such that
q(a, b). With (Ax3), it holds r(a, b). From ∀z p(a, z), it holds p(a, b). With (Ax1),
this leads to a contradiction. Assume ∀y q(y, y). With (Ax3), it holds ∀y r(y, y).
From ∀y q(y, y), it holds q(a, a). From ∀y r(y, y), it holds r(a, a). From ∀z p(a, z),
it holds p(a, a). With (Ax1), this leads to a contradiction. All the branches are
closed and the conjecture has been proven.

6 Related Work

There are several proving procedures for coherent logic and similar fragments of
FOL, and several corresponding automated theorem provers. To our knowledge,
the first CL automated theorem prover was developed in Prolog by Janičić and
Kordić [9] and was used for one axiomatization of Euclidean geometry. This
prover was later reimplemented in C++ to give a more efficient and generic
theorem prover ArgoCLP that produces both natural language proofs and object
level proofs in the Isabelle form [18]. Bezem and Coquand developed in Prolog a
sound and complete CL prover [2] based on breadth-first search that generates
proof objects in Coq. Berghofer and Bezem developed an internal prover for CL
in ML to be used within the system Isabelle [19]. Neither of these provers uses
backjumps or lemma learning. De Nivelle implemented a theorem prover for logic
close to coherent logic, that uses a mechanism for learning lemmas of somewhat
restricted form [15]. All of these systems perform only ground reasoning.

Our work is also related to research focused on CDCL-based SAT solvers.
Various modifications to the original DPLL procedure have been proposed, both
on the high, logical level, and on the lower, algorithmic and implementation
level [5]. Modern SAT solvers have been recently described (with some imple-
mentation features omitted) via abstract state transition systems [13, 10]. These

systems provided a solid ground for rigorous analysis of the SAT solvers and
their correctness was formally proved within the system Isabelle [12]. On the op-
erational, practical level, our CL system enables the transfer of SAT algorithms
and heuristics (that had a great impact on SAT solving) to CL in some form.

Our system builds on the SAT system presented in Section 2. The differences
are primarily due to the first order nature and the form of coherent logic. Use
of existential quantifiers results in use of Intro rule which is not present in SAT.
Also, dealing with first order formulae results in more complex rules due to the
use of substitutions and quantifiers. At this moment we do not include Forget
and Restart rules, which can be trivially added, but with them an additional
care has to be taken not to jeopardize completeness.

Our work is also related to work on effectively propositional logic, also known
as EPR, or as the Bernays-Schönfinkel fragment of first-order logic [16].

Another lifting of DPLL procedure, to the clausal fragment of first order
logic, is the Model evolution calculus [1]. There are several differences between
this system and ours. The first is the underlying logic itself. Working in CL, one
can avoid transformation to clausal form when working with coherent theories
(like geometry). In our system, the refutation is avoided and forward proofs are
used. Skolemization is avoided and existential quantifiers are used. These prop-
erties enable generation of readable proofs, close to proofs from mathematical
textbooks. Also, in Model evolution calculus, backjump is not treated as a part
of the calculus, but as an implementation technique [1].

7 Conclusions and Future Work

In this paper we presented an abstract state transition system for proving validity
in coherent logic, but also in a somewhat broader fragment of first order logic.
The system is sound and complete: any formula proved by the system is indeed a
theorem, and for any input theorem, the system can and will prove it. This also
proves the semidecidability of the defined extension of coherent logic. The system
is based on a transition system for CDCL-based SAT solving. In contrast to other
coherent theorem provers, the reasoning need not to be ground. An important
property is that the system allows the generation of formal and human readable
forward chaining proofs and we showed how they can be generated.

We are currently developing the implementation that faithfully matches the
presented system and expect it to perform well compared to the existing provers.
Heuristics that guide applications of the rules should be devised to improve
the performance, hopefully in the spirit of heuristics for SAT [14]. Also, the
generation of formal (in Isabelle/Isar) and readable object-level proofs will be
implemented. We are planning to use the prover for a range of applications,
including applications in formalization of mathematics, education, and program
synthesis.

References

1. P. Baumgartner and C. Tinelli. The Model Evolution Calculus as a First-Order
DPLL Method. Artificial Intelligence, 172(4-5), 2008.

2. M. Bezem and T. Coquand. Automating coherent logic. LPAR 2005, LNCS 3835,
Springer 2005.

3. M. Bezem. On the Undecidability of Coherent Logic. Processes, Terms and Cycles,
2005.

4. M. Bezem and D. Hendriks. On the Mechanization of the Proof of Hessenberg’s
Theorem in Coherent Logic. J. of Automated Reasoning, 40(1), 2008.

5. A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors. Handbook of Satisfia-
bility, IOS Press, 2009.

6. M. Davis and H. Putnam. A Computing Procedure for Quantification Theory. J.
of ACM, 7(3), 1960.

7. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-
proving. Communications of the ACM, 5(7), 1962.

8. J. Fisher and M. Bezem. Skolem machines and geometric logic. International
Colloquium on Theoretical Aspects of Computing 2007, LNCS 4711, Springer, 2007.

9. P. Janičić and S. Kordić. EUCLID — the geometry theorem prover. FILOMAT,
9(3), 1995.

10. S. Krstić and A. Goel. Architecting solvers for sat modulo theories: Nelson-oppen
with DPLL. In FROCOS 2007, LNCS 4720, Springer, 2007.

11. F. Marić. Formalization and Implementation of Modern SAT Solvers. J. of Auto-
mated Reasoning, 43(1), 2009.

12. F. Marić and P. Janičić. Formalization of Abstract State Transition Systems for
SAT. Logical Methods in Computer Science, 7(3), 2011.

13. R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT modulo theories:
From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T). J.
of ACM, 53(6), 2006.

14. M. Nikolić, F. Marić, and P. Janicić. Instance-Based Selection of Policies for SAT
Solvers, SAT 2009, LNCS 5584, Springer, 2009.

15. H. de Nivelle, J. Meng: Geometric Resolution: A Proof Procedure Based on Finite
Model Search. IJCAR 2006, LNCS 4130, Springer, 2006.

16. R. Piskač, L. de Moura, and N. Bjorner. Deciding effectively propositional logic
using DPLL and substitution sets. J. of Automated Reasoning, 44, 2010.

17. A. Polonsky. Proofs, Types, and Lambda Calculus PhD thesis, University of
Bergen, 2010.

18. S. Stojanović, V. Pavlović, P. Janičić. Automated Generation of Formal and Read-
able Proofs in Geometry Using Coherent Logic. ADG 2010, LNCS 6877, Springer,
2011.

19. M. Wenzel. Isar - A Generic Interpretative Approach to Readable Formal Proof
Documents, TPHOLs 1999, LNCS 1690, Springer, 2002.

