
Formalization of Incremental Simplex Algorithm
by Stepwise Refinement

Mirko Spasić and Filip Marić

Faculty of Mathematics, University of Belgrade

Abstract. We present an Isabelle/HOL formalization and total correct-
ness proof for incremental version of Simplex algorithm which is used in
most state-of-the-art SMT solvers. Formalization relies on stepwise pro-
gram and data refinement, starting from a simple specification, going
trough a number of fine refinement steps, and ending up in a fully exe-
cutable functional implementation. Symmetries present in the algorithm
are handled with special care.

1 Introduction

Linear arithmetic solvers that decide satisfiability of linear constraint problems
have many practical uses (e.g., modeling finite sets, program arithmetic, ma-
nipulation of pointers and memory, real-time constraints, physical properties of
the environment) and are very important modules of many automated reasoning
tools (e.g., theorem provers, SMT solvers). Throughout history, many different
algorithms have been developed and, due to their importance, many have been
formally verified with machine checkable proofs [7,14,15,16].

The quantifier-free fragment of linear arithmetic is very important for many
applications (especially in SMT solving [4]). Most efficient decision procedures
for this fragment are based on an incremental versions of Simplex algorithm
[10,9]. They are specially adapted for use within SMT solvers and used in many
industrial applications. The basic procedure is formulated for linear rational
arithmetic, but its extensions use branch-and-bound and Gomory cuts tech-
niques [10] and can also handle integer constraints. We are not aware that any
Simplex based algorithm has been formally verified within a proof assistant (and
literature [9] shows only a sketch of its termination, but no partial correctness).

We present an Isabelle/HOL [18] formalization and total correctness proof of
the Simplex-based satisfiability checking procedure for linear rational arithmetic
given by Dutertre and de Moura [9,10]. Only the central case of deciding con-
junctions of constraints is considered — handling richer propositional structure
of the formula is left for future integrations with verified SAT solvers [13].

Our formalization is highly modular and based on the stepwise program and
data refinement — a well-studied technique due to Dijkstra [8] and Wirth [19],
and given mathematical rigor by Back [2]. Our formalization exploits several
different refinement techniques described for Isabelle/HOL [11,17]. Simplex al-
gorithm exhibits several symmetric cases that are handled with special care,

significantly simplifying the proofs. The importance of treating symmetries care-
fully has already been suggested in the literature [12,16].

Although unverified SMT solving procedures can be successfully used within
theorem provers using the certificate checking technique [1,5], we advocate that
the formal verification here presented has its own merits.

– The formalization offers clear explanations for subtle procedure details.
– By strictly applying the refinement techniques, the procedure can be ana-

lyzed and understood on different levels of abstraction.
– Abstract layers in the formalization allow easy porting of our formalization

to other theorem provers and verification systems.
– Executable code can be generated from the formalization and, by means of

reflection [7,15], the procedure can be used to decide validity of universally
quantified linear arithmetic constraints.

– The refinement approach makes this formalization suitable for a case study
for teaching formal methods.

– The formalization is a contribution to the growing body of verified theorem
proving algorithms.

The paper contains precise specifications (preconditions and effects) for all
functions and aims to describe how these are obtained from decisions made
during the algorithm development. All proofs are omitted from the presentation.
Stepwise refinement is pursued down to several simple functions, that can be
easily implemented. Their implementation is omitted from the present text, but
is given in the Isabelle/HOL formalization1 (containing a fully executable code).

Outline. The rest of the paper is structured as follows. In Section 2 we give
a brief overview of linear arithmetic and Simplex algorithm, Isabelle/HOL and
techniques for program and data refinement in Isabelle/HOL. In Section 3 we
present our formalization of the Simplex-based LRA solver and show all refine-
ment steps. In Section 4 we discuss the related work and give some experimental
comaparisons. In Section 5 we draw some conclusions and discuss further work.

2 Background

Linear arithmetic. Linear arithmetic is a decidable fragment of arithmetic involv-
ing addition and multiplication by constants. Constraints are usually formulated
either over reals or rationals (linear rational arithmetic, or LRA) or over integers
(linear integer arithmetic, or LIA). A quantifier-free linear arithmetic formula is
a first-order formula with atoms of the form: a1x1+ . . .+anxn ./ c, where ai and
c are rational numbers, xi are (rational or integer) variables, and ./ is one of the
operators =, ≤, <, >, ≥, or 6=. Most popular methods for deciding satisfiability
of LA formulae are the Fourier-Motzkin procedure and the Simplex algorithm.

Simplex algorithm. Simplex algorithm (invented by George Dantzig in 1947.)
is listed among the top 10 algorithms of the 20th century, and it is originally

1 Available online http://argo.matf.bg.ac.rs

http://argo.matf.bg.ac.rs

constructed to solve linear programming optimization problem (to maximize ob-
jective function on a convex polytope, specified by the set of linear constraints).
The decision procedure for linear arithmetic does not have to maximize anything,
but have to find a single feasible solution of input constraints. The variant of
Simplex method that can be used for this purpose is the dual Simplex algorithm,
that is quite effective when constraints are added incrementally.

Isabelle/HOL. Isabelle/HOL[18] is a proof assistant for Higher-order logic
(HOL). HOL conforms largely to everyday mathematical notation. Terms are
built using function applications (e.g., f x) and λ-abstractions (e.g., λx.x). let x =
t in P x reduces to P t. if -then-else and case expressions are also supported.
Basic types we use are Booleans (bool), naturals (nat), and rationals (rat). Type
variables are denoted by ′a, ′b, Sets over type ′a (denoted by ′a set) follow
usual conventions. Lists over type ′a (denoted by ′a list) come with the empty list
[], the infix constructor #, and standard higher-order functionals map and foldl .
Missing values are modeled by options over type ′a (denoted by ′a option) that
are either None or Some ′a, and the is the function such that the(Some x) = x.
Finite mappings from type ′a to type ′b (denoted by (′a,′ b)mapping) come with
a lookup (here denoted by look), and update (here denoted by upd) operators.
Algebraic datatypes (using the keyword datatype) and compound types (using
the keyword record) are supported. For each record field, there is a selector
function of the same name (e.g., accessing the field x in record r is denoted by
x r). Equality is polymorphic and is denoted by either =, ≡ or ←→ (on type
bool). Functions are defined by both primitive and general recursion. From the
specifications, executable code in several functional languages can be generated.

Refinement in Isabelle/HOL. Since Isabelle/HOL is a general proof-assistant,
there are many ways to express refinement. Several frameworks for refinement
(e.g., by Proteasa and Back or by Lammich) are available at Archive of Formal
Proofs (http://afp.sf.net). However, our formalization uses only the following
two (rather leightweight) approaches.

One approach for data and program refinement, based on code-generation
facilities of Isabelle/HOL, is described by Haftmann and Nipkow [11]. To re-
place one function implementation by another, a proof of their equivalence must
be made and the code generator must be instructed to use the desired imple-
mentation. Note that no axiomatic specification is used in this case. For data
refinement, the first step requires defining an abstract data type representation
and functions operating on this representation. Further steps require defining
concrete data type representation, defining the conversion from the concrete to
the abstract representation, and defining functions that operate on the concrete
type. Formalizations should rely only on the abstract representation, while con-
crete representations are used only during code generation. For more details see
[11].

Another approach for program refinement is based on locales [3] — Isabelle’s
version of parametrized theories. A locale is a named context of functions f1,
. . . , fn and assumptions P1, . . . , Pm about them that is introduced roughly like
locale loc = fixes f1, . . . , fn assumes P1, . . . , Pm. Locales can be hierarchical

http://afp.sf.net

as in locale loc = loc1 + loc2 + fixes In the context of a locale, definitions
can be made and theorems can be proved. Locales can be interpreted by concrete
instances of f1, . . . , fn, and then it must be shown that these satisfy assumptions
P1, . . . , Pm. A locale loc is a sublocale of a locale loc′ if all functions of loc′ can be
defined using the functions of loc and all assumptions of loc′ can be proved using
the assumptions of loc. Then every interpretation for loc can be automatically
converted to an interpretation of loc′.

In the context of program refinement, locales are used to define specifications,
i.e., abstract interfaces of functions (e.g., locale F = fixes f assumes P). A
refinement step can consist of changing the interface by adding stronger premises
(e.g., locale F ′ = fixes f assumes P ′). Then a sublocale relation between F
and F ′ must be proved. A slightly more complicated case is when the function
f can be implemented using several functions gi, each specified in its own locale
(e.g., locale Gi = fixes gi assumes Qi). Then, a joint locale can be defined
(e.g., locale F ′ = G1 + . . . + Gk) and f can be defined in it. To prove the
refinement, the sublocale relation between F and F ′ must be proved. A similar
technique is described by Nipkow [17].

3 Formalization

Next, we present our formalization of the incremental Simplex procedure.

3.1 Linear Polynomials and Constraints

Linear polynomials are of the form a1 ·x1+...+an ·xn. Their formalization follows
the data-refinement approach of Isabelle/HOL [11]. Abstract representation of
polynomials are functions mapping variables to their coefficients, where only
finitely many variables have non-zero coefficients. Operations on polynomials
are defined as operations on functions. For example, the sum of p1 and p2 is
defined by λ v . p1 v + p2 v and the value of a polynomial p for a valuation
v (denoted by p{|v |}), is defined by

∑
x∈{x . p x 6= 0}. p x · v x. Executable

representation of polynomials uses RBT mappings instead of functions.

Linear constraints are of the form p ./ c or p1 ./ p2, where p, p1, and p2,
are linear polynomials, c is a rational constant and ./ ∈ {<, >, ≤, ≥, =}. Their
abstract syntax is given by the constraint type, and semantics is given by the
relation |=c, defined straightforwardly by primitive recursion over the constraint
type. The list of contraints is satisfied, denoted by |=cs, if all constraints are.

datatype constraint = LT linear-poly rat | GT linear-poly rat | . . .
v |=c LT l r ←→ l{|v |} < r | v |=c GT l r ←→ l{|v |} > r | . . .
v |=cs cs ≡ ∀ c ∈ set cs. v |=c c

3.2 Procedure Specification

The specification for the satisfiability check procedure is given by:

locale Solve =
— Decide if the given list of constraints is satisfiable. Return the satisfiability status

and, in the satisfiable case, one satisfying valuation.
fixes solve :: constraint list ⇒ bool × rat valuation option
— If the status True is returned, then returned valuation satisfies all constraints.
assumes let (sat , v) = solve cs in sat −→ the v |=cs cs
— If the status False is returned, then constraints are unsatisfiable.
assumes let (sat , v) = solve cs in ¬ sat −→ ¬ (∃ v . v |=cs cs)

Note that the above specification requires returning a valuation (defined as a
HOL function), which is not efficiently executable. In order to enable more effi-
cient data structures for representing valuations, a refinement of this specification
is needed and the function solve is replaced by the function solve-exec returning
optional (var , rat) mapping instead of var ⇒ rat function. This way, efficient
data structures for representing mappings can be easily plugged-in during code
generation [11]. A conversion from the mapping datatype to HOL function is
denoted by 〈-〉 and given by: 〈v〉 x ≡ case look v x of Some y ⇒ y.

3.3 Handling Strict Inequalities

The first step of the procedure is removing all equalities and strict inequalities.
Equalities can be easily rewritten to non-strict inequalities. Removing strict
inequalities can be done by replacing the list of constraints by a new one, formu-
lated over an extension Q ′ of the space of rationals Q. Q ′ must have a structure
of a linearly ordered vector space over Q (represented by the type class lrv) and
must guarantee that if some non-strict constraints are satisfied in Q ′, then there
is a satisfying valuation for the original constraints in Q. Our final implemen-
tation uses the Qδ space, defined in [10] (basic idea is to replace p < c by p ≤
c − δ and p > c by p ≥ c + δ for a symbolic parameter δ). So, all constraints
are reduced to the form p ./ b, where p is a linear polynomial (still over Q), b is
constant from Q ′ and ./ ∈ {≤, ≥}. The non-strict constraints are represented
by the type ′a ns-constraint, and their semantics is denoted by |=ns and |=nss.

datatype ′a ns-constraint = LEQns linear-poly ′a | GEQns linear-poly ′a
v |=ns LEQns l r ←→ l{|v |} ≤ r | v |=ns GEQns l r ←→ l{|v |} ≥ r
v |=nss cs ≡ ∀ c ∈ set cs. v |=ns c

Specification of reduction of constraints to non-strict form is given by:

locale To-ns =
— Convert a constraint list to an equisatisfiable non-strict constraint list.
fixes to-ns :: constraint list ⇒ ′a::lrv ns-constraint list
assumes v |=cs cs =⇒ ∃ v ′. v ′ |=nss to-ns cs
— Convert the valuation that satisfies all non-strict constraints to the valuation that

satisfies all initial constraints.
fixes from-ns :: (var , ′a) mapping ⇒ ′a ns-constraint list ⇒ (var , rat) mapping
assumes 〈v ′〉 |=nss to-ns cs =⇒ 〈from-ns v ′ (to-ns cs)〉 |=cs cs

After the transformation, the procedure is reduced to solving only the non-
strict constraints, implemented in the solve-exec-ns function having an analogous

specification to the solve function. If to-ns, from-ns and solve-exec-ns are avail-
able, the solve-exec function can be easily defined and it can be easily shown
that this definition satisfies its specification (also analogous to solve).

solve-exec cs ≡ let cs ′ = to-ns cs; (sat , v) = solve-exec-ns cs ′ in
if sat then (True, Some (from-ns (the v) cs ′)) else (False, None)

3.4 Preprocessing

The next step in the procedure rewrites a list of non-strict constraints into an
equisatisfiable form consisting of a list of linear equations (called the tableau) and
of a list of atoms of the form x i ./ bi where x i is a variable and bi is a constant
(from the extension field). The transformation is straightforward and introduces
auxiliary variables for linear polynomials occurring in the initial formula. For
example, [x 1 + x 2 ≤ b1, x 1 + x 2 ≥ b2, x 2 ≥ b3] can be transformed to the
tableau [x 3 = x 1 + x 2] and atoms [x 3 ≤ b1, x 3 ≥ b2, x 2 ≥ b3].

Equations are of the form x = p, where x is a variable and p is a polynomial,
and are represented by the type eq = var × linear-poly. Semantics of equations
is given by v |=e (x , p) ≡ v x = p {| v |}. Tableau is represented as a list of
equations, by the type tableau = eq list. Semantics for a tableau is given by v
|=t t ≡ ∀ e∈set t . v |=e e. Functions lvars and rvars return sets of variables
appearing on the left hand side (lhs) and the right hand side (rhs) of a tableau.
Lhs variables are called basic while rhs variables are called non-basic variables.
A tableau t is normalized (denoted by 4 t) iff no variable occurs on the lhs of
two equations in a tableau and if sets of lhs and rhs variables are distinct.

Elementary atoms are represented by the type ′a atom and semantics for
atoms and sets of atoms is denoted by |=a and |=as and given by:

datatype ′a atom = Leq var ′a | Geq var ′a
v |=a Leq x c ←→ v x ≤ c | v |=a Geq x c ←→ v x ≥ c
v |=as as ≡ ∀ a ∈ as. v |=a a

The specification of the preprocessing function is given by:

locale Preprocess = fixes preprocess:: ′a::lrv ns-constraint list ⇒ tableau× ′a atom list
assumes
— The returned tableau is always normalized.

let (t , as) = preprocess cs in 4 t
— Tableau and atoms are equisatisfiable with starting non-strict constraints.

let (t , as) = preprocess cs in v |=as set as ∧ v |=t t −→ v |=nss cs
let (t , as) = preprocess cs in v |=nss cs −→ (∃ v ′. v ′ |=as set as ∧ v ′ |=t t)

Once the preprocessing is done and tableau and atoms are obtained, their
satisfiability is checked by the assert-all function. Its precondition is that the
starting tableau is normalized, and its specification is analogue to the one for the
solve function. If preprocess and assert-all are available, the solve-exec-ns can be
defined, and it can easily be shown that this definition satisfies the specification.

solve-exec-ns s ≡ let (t , as) = preprocess s in assert-all t as

3.5 Incrementally Asserting Atoms

The function assert-all can be implemented by iteratively asserting one by one
atom from the given list of atoms.

Asserted atoms will be stored in a form of bounds for a given variable. Bounds
are of the form l i ≤ x i ≤ ui, where l i and ui and are either scalars or ±∞. Each
time a new atom is asserted, a bound for the corresponding variable is updated
(checking for conflict with the previous bounds). Since bounds for a variable can
be either finite or ±∞, they are represented by (partial) maps from variables
to values (′a bounds = var ⇀ ′a). Upper and lower bounds are represented
separately. Infinite bounds map to None and this is reflected in the semantics:

c ≥ub b ←→ case b of None ⇒ False | Some b ′ ⇒ c ≥ b ′

c ≤ub b ←→ case b of None ⇒ True | Some b ′ ⇒ c ≤ b ′

Strict comparisons, and comparisons with lower bounds are performed similiarly.

A valuation satisfies bounds iff the value of each variable respects both its
lower and upper bound, i.e, v |=b (lb, ub) ≡ ∀ x . v x ≥lb lb x ∧ v x ≤ub ub x.
Asserted atoms are precisely encoded by the current bounds in a state (denoted
by

.
=) if every valuation satisfies them iff it satisfies the bounds, i.e., as

.
= (lb,

ub) ≡ ∀ v . v |=as as ←→ v |=b (lb, ub).

The procedure also keeps track of a valuation that is a candidate solution.
Whenever a new atom is asserted, it is checked whether the valuation is still
satisfying. If not, the procedure tries to fix that by changing it and changing the
tableau if necessary (but so that it remains equivalent to the initial tableau).

Therefore, the state of the procedure stores the tableau (denoted by T), lower
and upper bounds (denoted by Bl and Bu, and ordered pair of lower and upper
bounds denoted by B), candidate solution (denoted by V) and a flag (denoted
by U) indicating if unsatisfiability has been detected so far:

record ′a state =
T :: tableau Bl :: ′a bounds Bu :: ′a bounds V :: (var , ′a) mapping U :: bool

To be a solution of the initial problem, a valuation should satisfy the initial
tableau and list of atoms. Since tableau is changed only by equivalency preserving
transformations and asserted atoms are encoded in the bounds, a valuation is a
solution if it satisfies both the tableau and the bounds in the final state (when
all atoms have been asserted). So, a valuation v satisfies a state s (denoted by
|=s) if it satisfies the tableau and the bounds, i.e., v |=s s ≡ v |=b B s ∧ v |=t

T s. Since V should be a candidate solution, it should satisfy the state (unless
the U flag is raised). This is denoted by |= s and defined by |= s ≡ 〈V s〉 |=s s.
5 s will denote that all variables of T s are explicitly valuated in V s.

Assuming that the U flag and the current valuation V in the final state
determine the solution of a problem, the assert-all function can be reduced to
the assert-all-state function that operates on the states:

assert-all t as ≡ let s = assert-all-state t as in
if (U s) then (False, None) else (True, Some (V s))

Specification for the assert-all-state can be directly obtained from the spec-
ification of assert-all, and it describes the connection between the valuation in
the final state and the initial tableau and atoms. However, we will make an addi-
tional refinement step and give stronger assumptions about the assert-all-state
function that describes the connection between the initial tableau and atoms
with the tableau and bounds in the final state.

locale AssertAllState = fixes assert-all-state::tableau ⇒ ′a::lrv atom list ⇒ ′a state
assumes
— The final and the initial tableau are equivalent.
4 t =⇒ let s ′ = assert-all-state t as in (v :: ′a valuation) |=t t ←→ v |=t T s ′

— If U is not raised, then the valuation in the final state satisfies its tableau and its
bounds (that are, in this case, equivalent to the set of all asserted bounds).
4 t =⇒ let s ′ = assert-all-state t as in ¬ U s ′ −→ |= s ′

4 t =⇒ let s ′ = assert-all-state t as in ¬ U s ′ −→ set as
.
= B s ′

— If U is raised, then there is no valuation satisfying the tableau and the bounds in
the final state (that are, in this case, equivalent to a subset of asserted atoms).
4 t =⇒ let s ′ = assert-all-state t as in U s ′ −→ ¬ (∃ v . v |=s s ′)
4 t =⇒ let s ′ = assert-all-state t as in U s ′ −→ (∃ as ′. as ′ ⊆ set as ∧ as ′ .= B s ′)

The assert-all-state function can be implemented by first applying the init
function that creates an initial state based on the starting tableau, and then by
iteratively applying the assert function for each atom in the starting atoms list.

assert-loop as s ≡ foldl (λ s ′ a. if (U s ′) then s ′ else assert a s ′) s as

assert-all-state t as ≡ assert-loop ats (init t)

Specification for init can be obtained from the specification of asser-all-state
since all its assumptions must also hold for init (when the list of atoms is empty).
Also, since init is the first step in the assert-all-state implementation, the pre-
condition for init the same as for the assert-all-state. However, unsatisfiability
is never going to be detected during initialization and U flag is never going to
be raised. Also, the tableau in the initial state can just be initialized with the
starting tableau. The condition {} .= B (init t) is equivalent to asking that initial
bounds are empty. Therefore, specification for init can be refined to:

locale Init = fixes init ::tableau ⇒ ′a::lrv state
assumes

— Tableau in the initial state for t is t : T (init t) = t
— Since unsatisfiability is not detected, U flag must not be set: ¬ U (init t)
— The current valuation must satisfy the tableau: 〈V (init t)〉 |=t t
— In an inital state no atoms are yet asserted so the bounds must be empty:
Bl (init t) = (λ -. None) Bu (init t) = (λ -. None)

— All tableau vars are valuated: 5 (init t)

The assert function asserts a single atom. Since the init function does not
raise the U flag, from the definition of assert-loop, it is clear that the flag is
not raised when the assert function is called. Moreover, the assumptions about
the assert-all-state imply that the loop invariant must be that if the U flag is
not raised, then the current valuation must satisfy the state (i.e., |= s). The

assert function will be more easily implemented if it is always applied to a state
with a normalized and valuated tableau, so we make this another loop invariant.
Therefore, the precondition for the assert a s function call is that ¬ U s, |=
s, 4 (T s) and 5 s hold. The specification for assert directly follows from
the specification of assert-all-state (except that it is additionally required that
bounds reflect asserted atoms also when unsatisfiability is detected, and that it
is required that assert keeps the tableau normalized and valuated).

locale Assert = fixes assert :: ′a::lrv atom ⇒ ′a state ⇒ ′a state
assumes

— Tableau remains equivalent to the previous one and normalized and valuated.
[[¬ U s; |= s; 4 (T s); 5 s]] =⇒ let s ′ = assert a s in

((v :: ′a valuation) |=t T s ←→ v |=t T s ′) ∧ 4 (T s ′) ∧ 5 s ′

— If the U flag is not raised, then the current valuation is updated so that it satisfies
the current tableau and the current bounds.

[[¬ U s; |= s; 4 (T s); 5 s]] =⇒ ¬ U (assert a s) −→ |= (assert a s)
— The set of asserted atoms remains equivalent to the bounds in the state.

[[¬ U s; |= s; 4 (T s); 5 s]] =⇒ ats
.
= B s −→ (ats ∪ {a}) .

= B (assert a s)
— If the U flag is raised, then there is no valuation that satisfies both the current

tableau and the current bounds.
[[¬ U s; |= s; 4 (T s); 5 s]] =⇒ U (assert a s) −→ ¬ (∃ v . v |=s (assert a s))

Under these assumptions, it can easily be shown (mainly by induction) that
the previously shown implementation of assert-all-state satisfies its specification.

3.6 Aserting Single Atoms

The assert function is split in two phases. First, assert-bound updates the bounds
and checks only for conflicts cheap to detect. Next, check performs the full
simplex algorithm. The assert function can be implemented as assert a s =
check (assert-bound a s). Note that it is also possible to do the first phase for
several asserted atoms, and only then to let the expensive second phase work.

Asserting an atom x ./ b begins with the function assert-bound. If the atom
is subsumed by the current bounds, then no changes are performed. Otherwise,
bounds for x are changed to incorporate the atom. If the atom is inconsistent
with the previous bounds for x, the U flag is raised. If x is not a lhs variable in
the current tableau and if the value for x in the current valuation violates the
new bound b, the value for x can be updated and set to b, meanwhile updating
the values for lhs variables of the tableau so that it remains satisfied. Otherwise,
no changes to the current valuation are performed.

So, the assert-bound function must ensure that the given atom is included
in the bounds, that the tableau remains satisfied by the valuation and that all
variables except the lhs variables in the tableau are within their bounds. To
formalize this, we introduce the notation v |=b (lb, ub) ‖ S, and define v |=b (lb,
ub) ‖ S ≡ ∀ x∈S . v x ≥lb lb x ∧ v x ≤ub ub x, and |=nolhs s ≡ 〈V s〉 |=t T s
∧ 〈V s〉 |=b B s ‖ − lvars (T s). The assert-bound function raises the U flag if

and only if lower and upper bounds overlap. This is formalized as ♦ s ≡ ∀ x . if
Bl s x = None ∨ Bu s x = None then True else the (Bl s x) ≤ the (Bu s x).

Since the assert-bound is the first step in the assert function implementation,
the preconditions for assert-bound are the same as preconditions for the assert
function. The specifiction for the assert-bound is:

locale AssertBound = fixes assert-bound :: ′a::lrv atom ⇒ ′a state ⇒ ′a state
assumes
— The tableau remains unchanged and valuated.

[[¬ U s; |= s; 4 (T s); 5 s]] =⇒ let s ′ = assert-bound a s in T s ′ = T s ∧ 5 s ′

— If the U flag is not set, all but the lhs variables in the tableau remain within their
bounds, the new valuation satisfies the tableau, and bounds do not overlap. [[¬ U s;
|= s; 4 (T s); 5 s]] =⇒

let s ′ = assert-bound a s in ¬ U s ′ −→ |=nolhs s ′ ∧ ♦ s ′

— The set of asserted atoms remains equivalent to the bounds in the state.
[[¬ U s; |= s; 4 (T s); 5 s]] =⇒ ats

.
= B s −→ (ats ∪ {a}) .

= B (assert-bound a s)
— U flag is raised, only if the bounds became inconsistent:

[[¬ U s; |= s; 4 (T s); 5 s]] =⇒ let s ′ = assert-bound a s in U s ′ −→ ¬(∃ v . v |=s s ′)

The second phase of assert, the check function, is the heart of the Simplex
algorithm. It is always called after assert-bound, but in two different situations.
In the first case assert-bound raised the U flag and then check should retain the
flag and should not perform any changes. In the second case assert-bound did
not raise the U flag, so |=nolhs s, ♦ s, 4 (T s), and 5 s hold.

locale Check = fixes check :: ′a::lrv state ⇒ ′a state
assumes
— If check is called from an inconsistent state, the state is unchanged.

[[U s]] =⇒ check s = s
— The tableau remains equivalent to the previous one, normalized and valuated.

[[¬ U s; |=nolhs s; ♦ s; 4 (T s); 5 s]] =⇒
let s ′ = check s in ((v :: ′a valuation) |=t T s ←→ v |=t T s ′) ∧ 4 (T s ′) ∧ 5 s ′

— The bounds remain unchanged.
[[¬ U s; |=nolhs s; ♦ s; 4 (T s); 5 s]] =⇒ B (check s) = B s
— If U flag is not raised, the current valuation V satisfies both the tableau and the

bounds and if it is raised, there is no valuation that satisfies them.
[[¬ U s; |=nolhs s; ♦ s; 4 (T s); 5 s]] =⇒ ¬ U (check s) −→ |= (check s)
[[¬ U s; |=nolhs s; ♦ s; 4 (T s); 5 s]] =⇒ U (check s) −→ ¬ (∃ v . v |=s (check s))

Under these assumptions for assert-bound and check, it can be easily shown
that the implementation of assert (previously given) satisfies its specification.

However, for efficiency reasons, we want to allow implementations that delay
the check function call and call it after several assert-bound calls. For example:

assert-bound-loop ats s ≡ foldl (λs ′ a. if U s ′ then s ′ else assert-bound a s ′) s ats

assert-all-state t ats ≡ check (assert-bound-loop ats (init t))

Then, the loop consists only of assert-bound calls, so assert-bound postcon-
dition must imply its precondition. This is not the case, since variables on the
lhs may be out of their bounds. Therefore, we make a refinement and specify
weaker preconditions (replace |= s, by |=nolhs s and ♦ s) for assert-bound, and

show that these preconditions are still good enough to prove the correctnes of
this alternative assert-all-state definition.

3.7 Update and Pivot

Both assert-bound and check need to update the valuation so that the tableau re-
mains satisfied. If the value for a variable not on the lhs of the tableau is changed,
this can be done rather easily (once the value of that variable is changed, one
should recalculate and change the values for all lhs variables of the tableau). The
update function does this, and it is specified by:

locale Update = fixes update::var ⇒ ′a::lrv ⇒ ′a state ⇒ ′a state
assumes
— Tableau, bounds, and the unsatisfiability flag are preserved.

[[4 (T s); 5 s; x /∈ lvars (T s)]] =⇒
let s ′ = update x c s in T s ′ = T s ∧ B s ′ = B s ∧ U s ′ = U s

— Tableau remains valuated.
[[4 (T s); 5 s; x /∈ lvars (T s)]] =⇒ 5 (update x v s)
— The given variable x in the updated valuation is set to the given value v while all

other variables (except those on the lhs of the tableau) are unchanged.
[[4 (T s); 5 s; x /∈ lvars (T s)]] =⇒ x ′ /∈ lvars (T s) −→

look (V (update x v s)) x ′ = (if x = x ′ then Some v else look (V s) x ′)
— Updated valuation continues to satisfy the tableau.

[[4 (T s); 5 s; x /∈ lvars (T s)]] =⇒ 〈V s〉 |=t T s −→ 〈V (update x c s)〉 |=t T s

Given the update function, assert-bound can be implemented as follows.

assert-bound (Leq x c) s ≡
if c ≥ub Bu s x then s
else let s ′ = s (| Bu := (Bu s) (x := Some c) |)

in if c <lb Bl s x then s ′ (| U := True |)
else if x /∈ lvars (T s ′) ∧ c < 〈V s〉 x then update x c s ′ else s ′

The case of Geq x c atoms is analogous (a systematic way to avoid symmetries
is discussed in Section 3.9). This implementation satisfies both its specifications.

Updating changes the value of x and then updates values of all lhs variables
so that the tableau remains satisfied. This can be based on a function that
recalculates rhs polynomial values in the changed valuation:

locale RhsEqVal = fixes rhs-eq-val ::(var , ′a::lrv) mapping ⇒ var ⇒ ′a ⇒ eq ⇒ ′a
— rhs-eq-val computes the value of the rhs of e in 〈v〉(x := c).
assumes 〈v〉 |=e e =⇒ rhs-eq-val v x c e = rhs e {| 〈v〉 (x := c) |}

Then, the next implementation of update satisfies its specification:

update-eq v x c v ′ e ≡ upd (lhs e) (rhs-eq-val v x c e) v ′

update x c s ≡ s(|V := upd x c (foldl (update-eq (V s) x c) (V s) (T s))|)
To update the valuation for a variable that is on the lhs of the tableau it

should first be swapped with some rhs variable of its equation, in an operation
called pivoting. Pivoting has the precondition that the tableau is normalized
and that it is always called for a lhs variable of the tableau, and a rhs variable

in the equation with that lhs variable. The set of rhs variables for the given
lhs variable is found using the rvars-of-lvar function (specified in a very simple
locale EqForLVar, that we do not print).

locale Pivot = EqForLVar + fixes pivot ::var ⇒ var ⇒ ′a::lrv state ⇒ ′a state
assumes

— Valuation, bounds, and the unsatisfiability flag are not changed.
[[4 (T s); x i ∈ lvars (T s); x j ∈ rvars-of-lvar (T s) x i]] =⇒

let s ′ = pivot x i x j s in V s ′ = V s ∧ B s ′ = B s ∧ U s ′ = U s
— The tableau remains equivalent to the previous one and normalized.

[[4 (T s); x i ∈ lvars (T s); x j ∈ rvars-of-lvar (T s) x i]] =⇒
let s ′ = pivot x i x j s in ((v :: ′a valuation) |=t T s ←→ v |=t T s ′) ∧ 4 (T s ′)

— x i and x j are swapped, while the other variables do not change sides.
[[4 (T s); x i ∈ lvars (T s); x j ∈ rvars-of-lvar (T s) x i]] =⇒ let s ′ = pivot x i x j s in

rvars(T s ′) = rvars(T s)−{x j}∪{x i} ∧ lvars(T s ′) = lvars(T s)−{x i}∪{x j}

Functions pivot and update can be used to implement the check function. In
its context, pivot and update functions are always called together, so the following
definition can be used: pivot-and-update x i x j c s = update x i c (pivot x i x j
s). It is possible to make a more efficient implementation of pivot-and-update
that does not use separate implementations of pivot and update. To allow this, a
separate specification for pivot-and-update can be given. It can be easily shown
that the pivot-and-update definition above satisfies this specification.

Pivoting the tableau can be reduced to pivoting single equations, and sub-
stituting variable by polynomials. These operations are specified by:

locale PivotEq = fixes pivot-eq ::eq ⇒ var ⇒ eq
assumes
— Lhs var of eq and x j are swapped, while the other variables do not change sides.
[[x j ∈ rvars-eq eq ; lhs eq /∈ rvars-eq eq]] =⇒ let eq ′ = pivot-eq eq x j in

lhs eq ′ = x j ∧ rvars-eq eq ′ = {lhs eq} ∪ (rvars-eq eq − {x j})
— Pivoting keeps the equation equisatisfiable.
[[x j ∈ rvars-eq eq ; lhs eq /∈ rvars-eq eq]] =⇒

(v :: ′a::lrv valuation) |=e pivot-eq eq x j ←→ v |=e eq
locale SubstVar = fixes subst-var ::var ⇒ linear-poly ⇒ linear-poly ⇒ linear-poly
assumes
— Effect of subst-var x j lp ′ lp on lp variables.
(vars lp − {x j}) − vars lp ′ ⊆ vars (subst-var x j lp ′ lp) ⊆ (vars lp − {x j}) ∪ vars lp ′

— Effect of subst-var x j lp ′ lp on lp value.
(v :: ′a::lrv valuation) x j = lp ′ {|v |} −→ lp {|v |} = (subst-var x j lp ′ lp) {|v |}

Then, the next implementation of pivot satisfies its specification:

pivot-tableau x i x j t ≡ let eq = eq-for-lvar t x i; eq ′ = pivot-eq eq x j in
map (λ e. if lhs e = lhs eq then eq ′ else subst-var-eq x j (rhs eq ′) e) t

pivot x i x j s ≡ s(| T := pivot-tableau x i x j (T s) |)

3.8 Check implementation

The check function is called when all rhs variables are in bounds, and it checks if
there is a lhs variable that is not. If there is no such variable, then satisfiability

is detected and check succeeds. If there is a lhs variable x i out of its bounds, a
rhs variable x j is sought which allows pivoting with x i and updating x i to its
violated bound. If x i is under its lower bound it must be increased, and if x j has
a positive coefficient it must be increased so it must be under its upper bound
and if it has a negative coefficient it must be decreased so it must be above its
lower bound. The case when x i is above its upper bound is symmetric (avoiding
symmetries is discussed in Section 3.9). If there is no such x j , unsatisfiability is
detected and check fails. The procedure is recursively repeated, until it either
succeeds or fails. To ensure termination, variables x i and x j must be chosen
with respect to a fixed variable ordering. For choosing these variables auxiliary
functions min-lvar-not-in-bounds, min-rvar-inc and min-rvar-dec are specified
(each in its own locale). For, example:

locale MinLVarNotInBounds = fixes min-lvar-not-in-bounds:: ′a::lrv state ⇒ var option
assumes
min-lvar-not-in-bounds s = None −→ (∀ x∈lvars (T s). in-bounds x 〈V s〉 (B s))
min-lvar-not-in-bounds s = Some x i −→ x i∈lvars (T s) ∧ ¬in-bounds x i 〈V s〉 (B s)
∧ (∀ x∈lvars (T s). x < x i −→ in-bounds x 〈V s〉 (B s))

The definition of check can be given by:

check s ≡ if U s then s
else let x i

′ = min-lvar-not-in-bounds s in
case x i

′ of None ⇒ s
| Some x i ⇒ if 〈V s〉 x i <lb Bl s x i then check (check-inc x i s)

else check (check-dec x i s)

check-inc x i s ≡ let l i = the (Bl s x i); x j
′ = min-rvar-inc s x i in

case x j
′ of None ⇒ s (| U := True |) | Some x j ⇒ pivot-and-update x i x j l i s

The definition of check-dec is analogous. It is shown (mainly by induction)
that this definition satisfies the check specification. Note that this definition
uses general recursion, so its termination is non-trivial. It has been shown that
it terminates for all states satisfying the check preconditions. The proof is based
on the proof outline given in [10]. It is very technically involved, but conceptually
uninteresting so we do not discuss it in more details.

3.9 Symmetries

Simplex algorithm exhibits many symmetric cases. For example, assert-bound
treats atoms Leq x c and Geq x c in a symmetric manner, check-inc and check-dec
are symmetric, etc. These symmetric cases differ only in several aspects: order
relations between numbers (< vs > and ≤ vs ≥), the role of lower and upper
bounds (Bl vs Bu) and their updating functions, comparisons with bounds (e.g.,
≥ub vs ≤lb or <lb vs >ub), and atom constructors (Leq and Geq). These can be
attributed to two different orientations (positive and negative) of rational axis.
To avoid duplicating definitions and proofs, assert-bound definition cases for Leq
and Geq are replaced by a call to a newly introduced function parametrized by

a Direction — a record containing minimal set of aspects listed above that differ
in two definition cases such that other aspects can be derived from them (e.g.,
only < need to be stored while ≤ can be derived from it). Two constants of the
type Direction are defined: Positive (with <, ≤ orders, Bl for lower and Bu for
upper bounds and their corresponding updating functions, and Leq constructor)
and Negative (completely opposite from the previous one). Similarly, check-inc
and check-dec are replaced by a new function check-incdec parametrized by a
Direction. All lemmas, previously repeated for each symmetric instance, were
replaced by a more abstract one, again parametrized by a Direction parameter.

4 Related Work

The literature on decision procedures for linear arithmetic is vast. Regarding
the formally verified algorithms, the closest work to ours is done by Chaieb and
Nipkow [7,14,15,16]. They have verifed a number of quantifier-elemination algo-
rithms for both rational and integer case. They cover arbitrary quantifiers and
propositional structure (although by a simple DNF-based approach), but restrict
atoms only to < and = relations. Our approach has more limited scope since it
covers only the quantifier-free case for rational arithmetic, but our experimental
results show that, due to the Simplex procedure, it significantly outperforms
Fourier-Motzkin procedure verified by Nipkow [16]. We have tested 90 random
generated quantifier-free LRA instances with 2-10 variables and 10-100 con-
straints. Fourier-Motzkin procedure solved only 8 within a 300s time-limit with
average time of 66.40s, while Simplex solved all 90 with average time of 0.44s.

5 Conclusions and Further Work

We have presented a formalization of a functional model for the incremental
Simplex procedure [10] used in most state-of-the art SMT solvers and proved its
total correctness. Only the central case of deciding conjunctions of constraints
was discussed, while other important but simpler questions (e.g., explanations,
propagations) are left for further work.

The decision to use a stepwise refinement approach enormously simplified
reasoning about the procedure. Initially, we did a formalization by formulating
the whole algorithm and reasoning about it at once, and our experience shows
that this monolith approach required proofs that are several times longer and
much harder to understand and follow. Stepwise refinement makes the formal-
ization modular and it is much easier to make changes to the procedure.

Another important decision in our formalization was to pay special atten-
tion to symmetric cases in the proof. Pen-and-paper termination proof outline
[9] deals only with one of four symmetric cases arising in that context and con-
cludes that other cases are handled ,,similarly”. A direct approach would be to
copy-paste the case four times and adapt the proof in each case. However, our
generalizations made in basic predicate definitions, completly removed the need
for case-analysis in the proof text.

The main obstacle for achieving the maximal efficiency is the lack of imper-
ative data-structures in our formalization. This can be improved if the Impera-
tive/HOL framework [6] is used. However, this does not fit well with our stepwise
refinement approach. Imperative/HOL would require redefining the whole code
using the monadic approach and proving some kind of equivalence with the
current purely functional implementation.

References

1. M. Armand, G. Faure, B. Grégoire, C. Keller, L. Théry, and B. Werner. A Modular
Integration of SAT/SMT solvers to Coq through Proof Witnesses. In CPP 2011,
LNCS 7086. Springer, 2011.

2. Ralph-Johan Back. On the Correctness of Refinement Steps in Program Develop-
ment. PhD thesis, Åbo Akademi, Helsinki, Finland, 1978. Report A–1978–4.

3. Clemens Ballarin. Interpretation of Locales in Isabelle: Theories and Proof Con-
texts. In MKM 2006, LNCS 4108, Springer, 2006.

4. C. Barrett, R. Sebastiani, S. Seshia, and C. Tinelli. Satisfiability Modulo Theo-
ries. In A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors, Handbook of
Satisfiability, IOS Press, 2009.

5. S. Böhme and T. Weber. Fast LCF-style Proof Reconstruction for Z3. In ITP
2010, LNCS 6172, 2010.

6. L. Bulwahn, A. Krauss, F. Haftmann, L. Erkök, J. Matthews. Imperative Func-
tional Programming with Isabelle/HOL. In TPHOLs, LNCS 5170, Springer, 2010.

7. A. Chaieb and T. Nipkow. Proof Synthesis and Reflection for Linear Arithmetic.
J. Automated Reasoning, 41:33–59, 2008.

8. E. W. Dijkstra. A Constructive Approach to the Problem of Program Correctness.
BIT Numerical Mathematics, 8:174–186, 1968.

9. B. Dutertre and L. de Moura. Integrating Simplex with DPLL(T). Technical
Report SRI-CSL-06-01, SRI International, 2006.

10. B. Dutertre and L. de Moura. A Fast Linear-Arithmetic Solver for DPLL(T). In
CAV 2006, LNCS 4144, Springer, 2006.

11. F. Haftmann and T. Nipkow. Code Generation via Higher-Order Rewrite Systems.
In FLOPS 2010, LNCS 6009, Springer, 2010.

12. John Harrison. Without Loss of Generality. In TPHOLs 2009, LNCS 5674,
Springer, 2009.

13. Filip Marić. Formal Verification of a Modern SAT Solver by Shallow Embedding
into Isabelle/HOL. Theor. Comput. Sci., 411(50):4333–4356, 2010.

14. Tobias Nipkow. Linear Quantifier Elimination. In IJCAR 2008, LNCS 5195,
Springer, 2008.

15. Tobias Nipkow. Reflecting Quantifier Elimination for Linear Arithmetic. In Formal
Logical Methods for System Security and Correctness, IOS Press, 2008.

16. Tobias Nipkow. Linear Quantifier Elimination. J. Automated Reasoning, 45:189–
212, 2010.

17. Tobias Nipkow. Verified Efficient Enumeration of Plane Graphs Modulo Isomor-
phism. In ITP 2011, LNCS 6898, Springer, 2011.

18. T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, LNCS 2283, Springer, 2002.

19. Niklaus Wirth. Program Development by Stepwise Refinement. Commun. ACM,
26(1):70–74, 1983.

	Formalization of Incremental Simplex Algorithm by Stepwise Refinement

