
Preprocessing of the Axiomatic System

for More Efficient Automated Proving
and Shorter Proofs�

Sana Stojanović

Faculty of Mathematics, University of Belgrade
Studentski trg 16, 11000 Belgrade, Serbia

sana@matf.bg.ac.rs

Abstract. One of the main differences between pen-and-paper proofs
and computer proofs is in the number of simple facts derived. In auto-
mated proof generation, the number of simple facts can be large. We are
addressing this problem by preprocessing of the axiomatic system that
should enable reduction in the number of simple and redundant facts
to some extent. We implemented two types of preprocessing techniques,
one concerning symmetric predicates, and another restricting introduc-
tion of witnesses during proof search. Both techniques were used within
a coherent logic prover ArgoCLP. Evaluations performed on geometrical
domain show that use of these techniques makes automated process more
efficient and generated proofs often significantly shorter.

Keywords: Predicate symmetry, Axiom reformulation, Coherent logic,
Automated and formal theorem proving.

1 Introduction

One of common challenges in automated and interactive theorem proving is cop-
ing with proving “simple facts”. In traditional pen-and-paper theorem proving,
“simple facts” – trivial facts that don’t need deep proofs and theory-specific ar-
guments – are typically assumed or neglected. However, in automated theorem
proving “simple facts” can significantly increase the search space, while in inter-
active theorem proving they can make a significant burden in following the main
line of the proof. Because of this, there is a number of methods and techniques
for dealing with simple facts both in automated and interactive theorem proving.
In this paper, we will address this issues in the context of automated generation
of formal (machine verifiable) but also readable proofs.

We address two sorts of simple facts – those that rely on symmetry properties
of certain predicates and those that rely on specific reformulations of certain
axioms or lemmas. Symmetries and properties of symmetrical predicates have

� This work has been partly supported by the grant 174021 of the Ministry of Science
of Serbia and by the SNF SCOPES grant IZ73Z0 127979/1.

T. Ida and J. Fleuriot (Eds.): ADG 2013, LNAI 7993, pp. 181–192, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



182 S. Stojanović

been widely studied and used in automated reasoning [5,6,7], but in this paper
we will consider one variant sufficient for our purposes. In cases when the prover
introduces witnesses during the proof search, a large number of (potentially
unnecessary) witnesses can lead to larger search space and redundant steps.

As an answer to those problems we propose two simple preprocessing tech-
niques. We built these two techniques into ArgoCLP [12] – a prover based on
coherent logic and forward reasoning that generates machine verifiable proofs in
Isar [11] and proofs in natural language. In the evaluation, we are focusing on Eu-
clidean geometry. The evaluation shows that application of these two techniques
improves the efficiency of the prover and generate proofs which are often signif-
icantly shorter. Moreover, the readable proofs that ArgoCLP generates become
more similar to the proofs that can be found in mathematics textbooks.

This paper is organized as follows: in Section 2 we give background infor-
mation on coherent logic and on prover ArgoCLP; in Section 3 we describe
the importance of symmetric predicates, their detection and use; in Section 4
we describe a technique dealing with axioms that introduce several witnesses;
in Section 5 we give an overview of our experiments; in Section 6 we give an
overview of related work; and in Section 7 we give our conclusions and plans for
the future work.

2 Coherent Logic and ArgoCLP Prover

Coherent Logic. Coherent logic (CL) was initially defined by Skolem and in
recent years was popularized by Bezem [3]. It is a fragment of first-order logic,
consisting of implicitly universally quantified formulae of the following form:

A1(x) ∧ . . . ∧An(x) ⇒ ∃y1B1(x,y1) ∨ . . . ∨ ∃ymBm(x,ym) (2.1)

where: n ≥ 0, m ≥ 0, x denotes a sequence of variables, Ai (for 1 ≤ i ≤ n)
denotes an atomic formula (involving some of the variables from x), yj denotes
a sequence of variables, and Bj (for 1 ≤ j ≤ m) denotes a conjunction of
atomic formulae (involving some of the variables from x and yj). There are
no function symbols with arity greater than 0. Function symbols of arity 0 are
called constants. A witness is a new constant, not appearing in axioms used nor
in the conjecture being proved. A term is a constant or a variable. An atomic
formula is either ⊥ or p(t1, . . . , tn) where p is a predicate symbol of arity n and
ti (1 ≤ i ≤ n) are terms. An atomic formula over constants is called a fact. CL
deals with the sets of facts — ground atomic expressions.

The reasoning in coherent logic is constructive and proof objects can easily
be obtained, therefore CL is suitable for producing both readable and formal
proofs. A large number of theories and theorems can be formulated directly in
CL. There exists a linear translation from FOL to CL that preserves logical
equivalence.

ArgoCLP Prover. ArgoCLP [12] is a generic theorem prover based on coherent
logic that automatically produces formal proofs in Isar and readable proofs in



Preprocessing of the Axiomatic System 183

English that resemble proofs that can be found in mathematics textbooks. It
can be used with any set of coherent axioms. The proof procedure is simple
forward chaining with iterative deepening. Since negations are not supported in
coherent logic, for every predicate symbol R, typically an additional symbol R
is introduced (that stands for ¬R) and the following two axioms are added to
the set of axioms (for every predicate R): R(x) ∧ R(x) ⇒ ⊥, and R(x) ∨ R(x)
(section A.1 of the appendix).

The following example shows a proof of one geometry theorem in natural
language generated by the ArgoCLP prover.

Example 1. Proof generated by the ArgoCLP prover.

Theorem: Assuming that p 	= q, and q 	= r, and the line p is incident to the
plane α, and the line q is incident to the plane α, and the line r is incident to
the plane α, and the lines p and q do not intersect, and the lines q and r do not
intersect, and the point A is incident to the plane α, and the point A is incident
to the line p, and the point A is incident to the line r, show that p = r.

Proof

Let us prove that p = r by reductio ad absurdum.

1. Assume that p 	= r.

2. It holds that the point A is incident to the line q or the point A is not
incident to the line q (by axiom of excluded middle).

3. Assume that the point A is incident to the line q.

4. From the facts that p 	= q, and the point A is incident to the line
p, and the point A is incident to the line q, it holds that the lines p and
q intersect (by axiom ax D5).

5. From the facts that the lines p and q intersect, and the lines p and
q do not intersect we get a contradiction.

Contradiction.

6. Assume that the point A is not incident to the line q.

7. From the facts that the lines p and q do not intersect, it holds that
the lines q and p do not intersect (by axiom ax nint l l 21).

8. From the facts that the point A is not incident to the line q, and the
point A is incident to the plane α, and the line q is incident to the plane
α, and the point A is incident to the line p, and the line p is incident to
the plane α, and the lines q and p do not intersect, and the point A is
incident to the line r, and the line r is incident to the plane α, and the
lines q and r do not intersect, it holds that p = r (by axiom ax E2).

9. From the facts that p = r, and p 	= r we get a contradiction.

Contradiction.

Therefore, it holds that p = r.

This proves the conjecture.

Theorem proved in 9 steps and in 0.02 s.



184 S. Stojanović

3 Dealing with Symmetric Predicates

Dealing with symmetric predicates is standardly supported in many automated
theorem provers, in different forms. In this paper we are attempting to automat-
ically add support for symmetric predicates as preprocessing technique.

Definition 1. (Symmetric predicate) An n-ary predicate R is symmetric (in
all arguments) if the following (universally quantified) statement holds in the
considered theory for every permutation σ:

R(x1, . . . , xn) ⇔ R(xσ(1), . . . , xσ(n))

Theorem 1. An n-ary predicate R is symmetric if and only if the following two
(universally quantified) statements hold:

R(x1, x2, x3, . . . , xn) ⇔ R(x2, x1, x3 . . . , xn) (3.1)

R(x1, x2, x3 . . . , xn) ⇔ R(x2, x3, . . . , xn, x1) (3.2)

In case that these two formulae are lemmas, formulae that express symmetry of
all other permutations are lemmas as well. Those lemmas and their proofs are
important for automated theorem proving and for generating formal proofs. The
set of all lemmas that express symmetry of a predicate will be referred to as the
symmetry lemmas.

Preprocessing Phase. The statements (3.1) and (3.2) can be automatically gen-
erated from the set of predicates of the axiomatic system, and the prover can
then automatically check whether these formulae are lemmas of the considered
theory (since not all of them will be lemmas, a time restriction must be set).
For symmetric predicates we can automatically generate a set of all symmetry
lemmas which can then be used in the automatic generation of formal proofs in
a manner described bellow.

Automated Proving Phase. In order to efficiently manage symmetric predicates,
all permutations of arguments of ground atomic formula will be represented by a
single permutation — a sorted one (for instance, using lexicographic ordering).
For example, for the predicate of collinearity and constants A, B, C, ground
atomic formulae col(B,A,C) and col(A,C,B) will both be represented with the
ground atom col(A,B,C), and are considered the same during proof search.

Object Level Proof Construction Phase. During proof generation these steps are
complemented with the following two lemmas:

col(B,A,C) ⇒ col(A,B,C)
col(A,B,C) ⇒ col(C,A,B)

Assuming that these lemmas were already proven by the prover, a complete
(formal) proof can be generated.



Preprocessing of the Axiomatic System 185

4 Dealing with Axiom Reformulations

Consider a (coherent) axiom of the following form:

A1(x) ∧ . . . ∧ An(x) ⇒ ∃yB(x,y) (4.1)

where n ≥ 0, y = {y1, y2, . . . , yk} and k ≥ 2. During the proof search, in the
context of forward chaining, this axiom introduces k witnesses :

A1(x) ∧ . . . ∧ An(x) ⇒ ∃y1∃y2 . . . ∃ykB(x, y1, . . . , yk)

In case when k = 1 the coherent logic prover does not apply axiom of the form
A1(x) ∧ . . . ∧ An(x) ⇒ ∃y1B(x, y1) if there is a such that B(x, a) holds, but in
the case of k existential quantifiers (k > 1) it checks for all k witnesses. I.e., this
axiom will not be applied if all of the witnesses instantiating y1, . . . , yk already
exist, but if at least one of them is missing, the axiom will introduce k new
witnesses. Our goal is to introduce less than k witnesses in case when some of
the witnesses that satisfy the axiom already exists.

Let the formula B be a conjunction of atoms, such that it can be represented
as B = B1 ∧B2, where B1 is a conjunction of all atoms that have only variables
from x and y1 (if such atoms do not exist, B1 is �), and B2 is a non-empty
conjunction of all other atoms from B:

A1(x) ∧ . . . ∧ An(x) ⇒ ∃y1 . . . ∃yk(B1(x, y1) ∧B2(x, y1, . . . , yk))

Consider the transformed version of the previous statement:

A1(x) ∧ . . . ∧ An(x) ∧B1(x, y1) ⇒ ∃y2 . . . ∃ykB2(x, y1, . . . , yk) (4.2)

This statement introduces less witnesses that the original one. In a general case,
such statement is not a consequent of axioms and is not provable within a given
theory. In case that it is provable, it will be used as a lemma but with higher
priority than the original axiom.

Preprocessing Phase. Axioms of the form 4.1 can be automatically recognized
(from the set of axioms) and a transformed statement can be generated for each
of them. The prover can check if a transformed statement is provable (since
not all generated statements will be provable, time restriction must be set). If
the transformed statement is provable, the transformation can be applied for
the new formula. This process is iterated while there can be found non empty
formula B2.

Automated Proving Phase. The generated lemmas are used as axioms, but during
a proof search the prover gives higher priority to those lemmas over the original
axiom.

Example 2. Considering the proofs of theorems based on Hilbert’s axioms, we
notice that certain axioms are rarely applied in their original form. For example,
the axiom I3: On every line there lie two different points, is more often applied



186 S. Stojanović

in the following manner (I3a): If there is a point A on the line p, then there
is a point B which is different from A and lies on p. This statement does not
correspond to a verbatim application of that axiom.We should actually introduce
two new points B and C, such that B and C are different and that both of them
lie on p. Nevertheless, this manner of application of axiom I3 is standardly used
in mathematical proofs. The statement I3a can actually be proven as a theorem,
and that would justify using it.

A problem that occurs with this approach is that not all generated statements
will be theorems. Let us consider the following example:

Example 3. Axiom I8: There exist three non-collinear points, will generate the
following two statements:

1. Given a point A, there exist points B and C such that A, B and C are
non-collinear.

2. Given points A and B, there exists a point C such that A, B and C are
non-collinear.

The first statement is a theorem, but the second statement is not a theorem.
It lacks an additional condition in its premises, i.e., points A and B must be
different. In such case, user may be prompted to try to assist and to add missing
premises.

5 Applications in Euclidean Geometry

In this section we discuss both the efficiency of the presented preprocessing
techniques, and the effects that they have on the power of the prover. Both
techniques were implemented in the prover ArgoCLP. The tool that implements
preprocessing techniques is separated from the prover itself. That way, the gen-
eration of auxiliary theorems is performed only once for one axiomatic system
and need not be performed every time when proving a theorem. All experiments
were performed on AMD Opteron 2GHz with 96GB RAM1. The system was
applied on a Hilbert style axiomatic system (only axioms of the first group of
Hilbert’s axioms were used). Most of Hilbert’s axioms and theorems are directly
expressible in coherent logic2.

Axiomatic System. Our axiomatic system is based on Hilbert’s axiomatic sys-
tem [8]. Since ArgoCLP works with coherent logic, some Hilbert’s axioms had to
be transformed in coherent logic form. The main transformation is elimination
of negation. As discussed in Section 2, for each predicate3 R new predicate R

1 All materials can be found in http://www.matf.bg.ac.rs/~sana/system.zip
2 Avigad, Dean, and Mumma [1] also noticed that a strong syntactic restriction on
formulae, similar to the coherent logic, is adequate to representing the axioms and
theorems of Euclid’s plane geometry.

3 Incidence of point with a line, incidence of point with a plane, incidence of line with a
plane; intersection of two lines, intersection of two planes; collinearity of three points,
coplanarity of four points, relation between for three points, congruence between
pairs of points.

http://www.matf.bg.ac.rs/~sana/system.zip


Preprocessing of the Axiomatic System 187

is added and the following axiom (definition) is added to the axiomatic system:
R∧R ⇒ ⊥. For some predicates R it is easy to define these new predicates R ex-
plicitly4. Alternatively, the following axiom can be used (which is less preferred,
because of cases split it introduces): R∨R. For predicates that are defined, this
formula can be proven as a theorem5. Those definitions are mainly trivial and
they are presented in appendix A.1.

Automated Detection of Symmetric Predicates. Symmetric property of predi-
cates R and R are proven separately because symmetry lemmas for both of
those predicates are used in completion of proofs.

Only predicates whose arguments are all of the same type are processed (pos-
itive and negative form of intersection of lines, intersection of planes, between,
collinearity, coplanarity, and congruence). A total of 20 statements of the form
(3.1) and (3.2) was generated (for predicates of arity two, these statements are
identical). Only those predicates for which both statements were proved can be
used as symmetric in proving geometry theorems.

In the set of the listed predicates, the following eight are symmetric: positive
and negative form of intersection of lines, intersection of planes, collinearity and
coplanarity. ArgoCLP succeeded in proving that seven out of these eight pred-
icates are symmetric (all but coplanarity) with the average execution time 3.6
seconds and the average number of steps 170. For predicates that are proven to
be symmetric, all lemmas that express symmetry of the predicate by permuta-
tions not covered by (3.1) and (3.2) are generated and again ArgoCLP was used
to generate their proofs. There are 40 such lemmas in total (with proving time
under 2 seconds).

Automated Reformulation of Axioms. The set of axioms that are automatically
recognized as axioms which introduce more than one witness is:

I3a There exist at least two different points on a line.
I3b There exist at least three points that are non-collinear.
I8 There exist at least four points which are non-coplanar.6

Statements that are automatically generated from this set, in the manner de-
scribed in section 4, are:

I3a1 (∀p : Line)(∀A : Point)A ∈ p ⇒ (∃B : Point)(A 	= B ∧B ∈ p)
I3b1 (∀A : Point)(∃B : Point)(∃C : Point)¬col(A,B,C)
I3b2 (∀A : Point)(∀B : Point)(∃C : Point)¬col(A,B,C)

4 col(A,B,C) ↔ (∃p)(A ∈ p ∧ B ∈ p ∧ C /∈ p).
5 For example, if A ∈ p ∨ A ∈ p holds, then it is trivial to prove col(A,P,Q) ∨
col(A,P,Q) (with appropriately defined predicate col).

6 These are not original formulations of the axioms. Axioms had to be slightly modified
in order to express them in coherent logic. Original formulation of these axioms is:
[I3a] There exist at least two points on a line, [I3b] There exist at least three points
that do not lie on a line, [I8] There exist at least four points which do not lie in a
plane.



188 S. Stojanović

I8a (∀A : Point)(∃B : Point)(∃C : Point)(∃D : Point)¬cop(A,B,C,D)
I8b (∀A : Point)(∀B : Point)(∃C : Point)(∃D : Point)¬cop(A,B,C,D)
I8c (∀A : Point)(∀B : Point)(∀C : Point)(∃D : Point)¬cop(A,B,C,D)

Two of these statements were proven (theorems I3a1 and I3b1), and formal
proofs in Isar were generated. Statements I3b2 and I8b lack the condition A 	= B,
and statement I8c lacks the condition ¬col(A,B,C) in order to be theorems.
Total time of this preprocessing phase is 20 minutes (when time limit is set to 5
minutes).

Improvement in the Performance of ArgoCLP. The described techniques were
tested on the prover ArgoCLP with small benchmark set of 24 theorems7 that
were all proved with ArgoCLP. The median and average proving time were 2
minutes and 23 minutes (due to four hard lemmas), while the average number
of steps was 1374.

1. Effect of Symmetric Predicates. For this evaluation we used only the auto-
matically proven symmetry theorems (that express symmetry for 7 out of
8 symmetric predicates). With this technique average proving time was re-
duced by 56% and the average number of steps by 83% (average proving
time was 10 minutes and average number of steps 230).

2. Exploitation of Axiom Reformulation. For this evaluation we used only the
reformulated versions of axioms that were proven automatically (two lem-
mas). We compare the performance of the prover using both techniques to
its performance when using only the technique for dealing with symmetries.
The average proving time was reduced by 15% and the average number of
steps by 37% (average proving time was 8.5 minutes and average number of
steps 143.).

3. The total improvement when using both techniques compared to the original
prover is 63% in the average proving time and 89% in the average number
of steps.

6 Related Work

Techniques for handling symmetric predicates are widely used in automated rea-
soning and constraint programming. The symmetry of problem instances (propo-
sitional formulae, CSPs, etc.), are intensively exploited in theorem proving. For
instance, Arai and Masukawa [2] designed a ground theorem prover Godzila that
quickly finds symmetries in combinatorial problems. Cadoli and Mancini [4,9]
considered specifications of constraint problems as logical formulae, and used
automated theorem prover to determine existence of symmetries and functional
dependencies.

7 For newly introduced predicates that are defined with new axioms, excluded middle
rule is a theorem and is a part of this set.



Preprocessing of the Axiomatic System 189

Dealing with symmetries in geometry dates back to 1959 and Gelernter [7]. He
was dealing with the problem of efficient machine manipulation of formal systems
in which the predicates display a high degree of symmetry, and successfully
eliminated symmetry-redundant goals.

Chou, Gao, and Zhang developed a deductive database method [6] that can be
used to prove or discover nontrivial geometry theorems. They noticed that most
geometric predicates (such as collinearity) satisfy properties such as transitivity
and symmetry, which leads to a large database and repetitive representation of
information. They used equivalence classes and canonical forms (in a way that
is similar to ours) to represent facts in the database and reduced size of the
database by a factor of 100.

Caferra, Peltier, and Puitg [5] used a similar approach in geometry theorem
proving in order to reduce the number of facts conveying the same information.
They incorporated human techniques in the prover which increased its power
and made user interaction more natural. They encoded equational theories such
as commutativity and circularity in the unification algorithm. Only the minimal
representative of equivalence class (determined by commutativity and circular-
ity) is stored into the database which results in a significant speed up.

Stojanović, Pavlović, and Janičić [12] developed a prover ArgoCLP but ana-
lyzed symmetries in a Hilbert style axiomatic system by hand. The information
on all symmetric predicates (all eight predicates, positive and negative form of
four symmetric predicates) was given to the prover as a new set of lemmas. Also,
reformulation of axioms was done manually and all reformulated formulae (six)
were added to the set of lemmas (after human intervention and inclusion of the
missing relations). In this paper we showed that to some extent this process can
be done automatically, without human intervention.

Meikle and Fleuriot [10] developed a semi-automated approach8 to geome-
try theorem proving. They automated in Isabelle/HOL some of the geometric
reasoning (symmetry of collinearity) that is often required in verification tasks
by extending Isabelle’s simplifier and classical reasoner. They noticed that some
of those theorems alone could generate infinite loops and that special attention
is needed. The potential problem with symmetry theorems and infinite loops
are not present with our approach either. The theorems that can generate an
infinite loop will not be used by our prover during the proof search, but only to
complete the proofs in places where the knowledge about symmetry is needed.
In contrast to their approach where proofs of theorems that express symmetry of
collinearity were proved by hand, in our approach, all symmetry theorems that
are used were proven automatically.

We are not aware of prior work related to axiom reformulation.

8 Semi-automated theorem proving is using automated techniques that are imple-
mented within interactive theorem proving assistant. During interactive process, the
user has the option of using the help of tool for automation if it manages to derive
some useful goals.



190 S. Stojanović

7 Conclusions and Future Work

We proposed two techniques for modification of an axiomatic system that im-
prove efficiency of forward chaining automated theorem provers. These tech-
niques were implemented and tested within ArgoCLP prover and the evaluation
was performed on the theorems of Euclidean geometry using Hilbert like ax-
iomatic system.

Automatic detection of symmetries managed to detect 7 out of 8 symmetric
predicates. The automated reformulation of axioms managed to detect 2 out of
6 useful lemmas. We showed that the exploitation of this knowledge during the
work of the prover can give better performance compared to the original prover.
The execution time was shortened by 63%. In some cases the proposed techniques
do not provide any speedup, but they never result in decreased efficiency.

With these simple techniques the generated proofs are shorter, simpler, and
closer to proofs from mathematics textbooks. These techniques can be useful,
for instance, for checking equivalence of different axiomatic systems (Hilbert’s
axiomatic system has several different interpretation).

Apart from predicates that are symmetric on all arguments, there are predi-
cates which are symmetric only in some arguments (between, congruence). They
are not discussed in this paper but can be treated in the same manner.

Most of the statements generated by reformulation of axioms in our experi-
ments are not provable because they are missing additional condition in premises
(4 out of 6 generated statements are not provable). One way of dealing with this
problem is user assistance and modification of those statements manually. In
the future, we plan to devise a heuristic for automatic discovery of additional
conditions.

References

1. Avigad, J., Dean, E., Mumma, J.: A formal system for Euclid’s Elements. The
Review of Symbolic Logic (2009)

2. Arai, N.H., Masukawa, R.: How to Find Symmetries Hidden in Combinatorial
Problems. In: Proceedings of the Eighth Symposium on the Integration of Symbolic
Computation and Mechanized Reasoning (2000)

3. Bezem, M., Coquand, T.: Automating coherent logic. In: Sutcliffe, G., Voronkov,
A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835, pp. 246–260. Springer, Heidelberg
(2005)

4. Cadoli, M., Mancini, T.: Using a Theorem Prover for Reasoning on Constraint
Problems. In: Bandini, S., Manzoni, S. (eds.) AI*IA 2005. LNCS (LNAI), vol. 3673,
pp. 38–49. Springer, Heidelberg (2005)

5. Caferra, R., Peltier, N., Puitg, F.: Emphasizing Human Techniques in Automated
Geometry Theorem Proving A Practical Realization. In: Richter-Gebert, J., Wang,
D. (eds.) ADG 2000. LNCS (LNAI), vol. 2061, pp. 268–305. Springer, Heidelberg
(2001)

6. Chou, S.-C., Gao, X.-S., Zhang, J.-Z.: A Deductive Database Approach to Auto-
mated Geometry Theorem Proving and Discovering. Journal of Automated Rea-
soning (2000)



Preprocessing of the Axiomatic System 191

7. Gelernter, H.: A Note on Syntatic Symmetry and the Manipulation of Formal
Systems by Machine. Information and Control (1959)

8. Hilbert, D.: Grundlagen der Geometrie, Leipzig (1899)
9. Mancini, T., Cadoli, M.: Detecting and Breaking Symmetries by Reasoning on

Problem Specifications. In: Zucker, J.-D., Saitta, L. (eds.) SARA 2005. LNCS
(LNAI), vol. 3607, pp. 165–181. Springer, Heidelberg (2005)

10. Meikle, L., Fleuriot, J.: Automation for Geometry in Isabelle/HOL. In: Proceedings
of PAAR, FLOC 2010 (2010)

11. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283. Springer,
Heidelberg (2002)

12. Stojanović, S., Pavlović, V., Janičić, P.: A Coherent Logic Based Geometry The-
orem Prover Capable of Producing Formal and Readable Proofs. In: Schreck,
P., Narboux, J., Richter-Gebert, J. (eds.) ADG 2010. LNCS (LNAI), vol. 6877,
pp. 201–220. Springer, Heidelberg (2011)

A Hilbert’s Axiomatic System I Group of Axioms

For readability, instead of writing A ∈ p we will write A /∈ p, and instead of
writing col(A,B,C) we will write ¬col(A,B,C).

Universal quantifiers and types are omitted in the formule for readability.
Capital letters are used for points, small letters are used for lines, and Greek
letters are used for planes.

I1 A 	= B ⇒ (∃p : line)(A ∈ p ∧B ∈ p)
I2 A 	= B ∧ A ∈ p ∧B ∈ p ∧ A ∈ q ∧B ∈ q ⇒ p = q
I3a (∃A : point)(∃B : point)(A 	= B ∧A ∈ p ∧B ∈ p)
I3b (∃A : point)(∃B : point)(∃C : point)¬col(A,B,C)
I4a ¬col(A,B,C) ⇒ (∃α : plane)(A ∈ α ∧B ∈ α ∧ C ∈ α)
I4b (∃A : point)A ∈ α
I5 ¬col(A,B,C) ∧ A ∈ α ∧B ∈ α ∧ C ∈ α ∧ A ∈ β ∧B ∈ β ∧ C ∈ β ⇒ α = β
I6 A 	= B ∧ A ∈ p ∧A ∈ α ∧B ∈ p ∧B ∈ α ⇒ p ∈ α
I7 α 	= β ∧ A ∈ α ∧A ∈ β ⇒ (∃B : point)(A 	= B ∧B ∈ α ∧B ∈ β)
I8 (∃A : point)(∃B : point)(∃C : point)(∃D : point)¬cop(A,B,C,D)

A.1 Additional Axioms

1. A = B ∨A 	= B
2. p = q ∨ p 	= q
3. α = β ∨ α 	= β
4. A ∈ p ∨ A /∈ p
5. A ∈ α ∨A /∈ α
6. A ∈ p ∧B ∈ p ∧C ∈ p ⇒ col(A,B,C)
7. col(A,B,C) ⇒ (∃p : line)(A ∈ p ∧B ∈ p ∧ C ∈ p)
8. A 	= B ∧A ∈ p ∧B ∈ p ∧ C /∈ p ⇒ ¬col(A,B,C)
9. A ∈ α ∧B ∈ α ∧ C ∈ α ∧D ∈ α ⇒ cop(A,B,C,D)
10. cop(A,B,C,D) ⇒ (∃α : plane)(A ∈ α ∧B ∈ α ∧ C ∈ α ∧D ∈ α)
11. ¬col(A,B,C) ∧ A ∈ α ∧B ∈ α ∧ C ∈ α ∧D /∈ α ⇒ ¬cop(A,B,C,D)



192 S. Stojanović

12. p 	= q ∧ A ∈ p ∧ A ∈ q ⇒ int(p, q)
13. int(p, q) ⇒ (∃A : point)(A ∈ p ∧A ∈ q ∧ p 	= q)
14. int(p, q) ∨ ¬int(p, q)
15. α 	= β ∧ A ∈ α ∧ A ∈ β ⇒ int(α, β)
16. int(α, β) ⇒ (∃A : point)(A ∈ α ∧ A ∈ β ∧ α 	= β)
17. int(α, β) ∨ ¬int(α, β)
18. p /∈ α ∧ A ∈ p ∧ A ∈ α ⇒ int(p, α)
19. int(p, α) ⇒ (∃A : point)(A ∈ p ∧ A ∈ α ∧ p /∈ α)
20. int(p, α) ∨ ¬int(p, α)
21. p ∈ α ∧ A ∈ p ⇒ A ∈ α
22. A ∈ p ∧ A /∈ α ⇒ p /∈ α

A.2 Theorems

1. A 	= B ∧ col(A,B,C) ∧ col(A,B,D) ⇒ col(A,C,D)
2. col(A,B,C) ∨ ¬col(A,B,C)
3. A 	= C ∧A ∈ p ∧B /∈ p ∧ C ∈ p ⇒ ¬col(A,B,C)
4. A 	= C ∧A ∈ p ∧ C ∈ p ∧ ¬col(A,B,C) ⇒ B /∈ p
5. p 	= q ∧ ¬int(p, q) ∧ A ∈ p ⇒ A /∈ q
6. α 	= β ∧ ¬int(α, β) ∧ A ∈ α ⇒ A /∈ β
7. p /∈ α ∧ A ∈ p ⇒ A /∈ α
8. ¬col(A,B,C) ⇒ (∃α : plane)(A ∈ α ∧B ∈ α ∧ C ∈ α)
9. cop(A,B,C,D) ∧ ¬col(A,B,C) ∧ A ∈ α ∧B ∈ α ∧C ∈ α ⇒ D ∈ α
10. p ∈ α ∨ p /∈ α
11. ¬col(A,B,C) ⇒ A 	= B ∧A 	= C ∧B 	= C
12. (∃A : point)(∃B : point)A 	= B
13. col(A,A,A)
14. (∃A : point)A /∈ p
15. p ∈ α ∧ q ∈ α ⇒ (∃A : point)(A ∈ p ∧ A ∈ q) ∨ ¬int(p, q)
16. p 	= q ∧ A ∈ p ∧ A ∈ q ∧B ∈ p ∧B ∈ q ⇒ A = B
17. ¬int(α, β) ∨ ((∃p : line)p ∈ α ∧ p ∈ β)
18. α 	= β ∧ p ∈ α ∧ p ∈ β ∧A ∈ α ∧ A ∈ β ⇒ A ∈ p
19. p /∈ α ⇒ (∃A : point)(A ∈ p ∧A ∈ α) ∨ ¬int(p, α)
20. p /∈ α ∧ A ∈ p ∧ A ∈ α ∧B ∈ p ∧B ∈ α ⇒ A = B
21. A /∈ p ⇒ (∃α : plane)(A ∈ α ∧ p ∈ α)
22. A /∈ p ∧ p ∈ α ∧ A ∈ α ∧ p ∈ β ∧ A ∈ β ⇒ α = β
23. p 	= q ∧ A ∈ p ∧ A ∈ q ⇒ (∃α : plane)(p ∈ α ∧ q ∈ α)
24. p 	= q ∧ A ∈ p ∧ A ∈ q ∧ p ∈ α ∧ q ∈ α ∧ p ∈ β ∧ q ∈ β ⇒ α = β


	Preprocessing of the Axiomatic System for More Efficient Automated Proving and Shorter Proofs
	Introduction
	Coherent Logic and ArgoCLP Prover
	Dealing with Symmetric Predicates
	Dealing with Axiom Reformulations
	Applications in Euclidean Geometry
	Related Work
	Conclusions and Future Work
	Hilbert's Axiomatic System I Group of Axioms
	Additional Axioms
	Theorems



