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Abstract. The problem of proof simplification draws a lot of attention to itself
across various contexts. In this paper, we present one approach for simplifying
proofs constructed in the framework of coherent logic. This approach is motivated
by the need for filtering-out “clean” and short proofs from proof-traces, which typi-
cally contain many irrelevant steps, and which are generated by automated theorem
provers – in this case, theorem provers based on coherent logic. Such “clean” proofs
can then be used for producing readable proofs in natural-language form. The
proof simplification procedure consists of three transformation steps. The first one
is based on the elimination of inference steps which are irrelevant for the present
proof, also allowing some irrelevant branchings to be eliminated, the second one
consists of lifting-up steps through the branching steps, followed by elimination of
repeated steps, while the third one serves to convert proof fragments into the reduc-
tio ad absurdum form, if possible. In contrast to general simplification procedures,
our proof simplification procedure is specific for a fragment of first order logic and
therefore simple and easy to implement, and allows simple generation of object level
proofs. We proceed to prove that this procedure is correct and terminating, and
also that it never increases the size of a proof. Finally, we implement the proof
simplification procedure, and provide several example proofs.
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1 INTRODUCTION

In recent decades, numerous automated theorem provers (ATPs) based on logics of
different expressive powers have been developed. Their main task is the automated
checking of the validity of a conjecture, and doing so as efficiently as possible1.
As a result, they often produce only a yes/no answer to the question whether the
given conjecture is a theorem or not (i.e. resolution provers, algebraic provers in
geometry, etc.). For some provers this process is accompanied by certain proof-
traces or genuine proof objects. However, the style of the proofs generated by ATPs
is different from the style used by human mathematicians – the language used to
express problems and solutions, as well as the nature of solutions differ. The former
generates long proofs, based on low-level arguments, while the latter would use
high-level arguments [11]. As these automatically generated proofs cannot typically
be read and scrutinized by a human mathematician, it can be argued that their
soundness greatly depends on a piece of software [4]. Even when these proofs are
made readable [6, 14, 23], they often consist of thousands of steps, many of which
are irrelevant, making these proofs de facto useless. For instance, it may happen
that automatically proving a conjecture which is effectively equal to one of the
axioms results in a proof-trace containing tens of steps. In this case, obviously, the
proof-trace could be shortened to the length of just one step – which would be the
application of the axiom that this conjecture is equal to. All of this indicates that
extraction of short and readable proofs from proof-traces would be of paramount
importance for many applications, such as for:

educational purposes – “Clean” formally verified proofs, could be used for auto-
matically producing proofs in natural-language form (by clean proof we consider
the proof without redundancies). Proofs could be given in a block-structured
natural-deduction format, or, by doing some additional transformations, in the
format which is more similar to the proofs found in textbooks (however, this
would be still far from the proof that a human mathematician would write). In
this way we would not just get a certificate of the truth, but also a proof which
would be more comprehensible for humans.

the formalization of mathematical knowledge – the main application of for-
malized mathematics is verification of the mathematical correctness. This is
usually done using proof assistants and the ones that are today the most in use
are Coq [25], Mizar [27], Isabelle/Isar [16], etc. Apart from having knowledge
which is formally proven correct, it is important that this formalized knowledge
is also human-understandable, and not only machine-verifiable. Automatically
generated proofs, which are likely to consist of a thousands of steps, are not the
most desirable for building the corpus of formalized mathematical knowledge.

applications in industry – although the main goal of industry applications is

1 The TPTP [24] provides a repository of problems for automated theorem provers for
their testing, evaluation and comparison.
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simply determining whether some conjecture is a theorem or not, the industry
could also benefit from having short and readable proofs. For instance, a read-
able proof could provide an insight into where the problem appeared in either
software or hardware.

It is interesting that even Hilbert in his 24th problem [26] asked for a criterion of
simplicity in mathematical proofs, and the development of a theory with the power
of proving that a proof is the simplest possible under given conditions2. In the
meanwhile, the problem of proof simplification for different kind of logics was recog-
nized as important by many researchers, and they employed different techniques in
order to solve it – redundant parts of proofs were being eliminated by doing pruning
[8], folding-up [15], proof condensation [15], etc. For some logics, some additional
advanced techniques, such as lemma extraction, were also implemented [15].

In this paper, we present a simplification procedure, which transforms a correct
proof in the framework of coherent logic into a proof of the same conjecture which
is usually quite shorter (but not necessarily the shortest possible). This “cleaning”
procedure does not lead to a smarter strategy of proof construction, but is rather
syntactic – it represents an addition to the proving procedure. In contrast to general
simplification procedures, since our proof simplification procedure is specific for a
coherent logic, it is simple and easy to implement and object level proofs are easily
generated. Transformations which the procedure conducts are neither complex nor
unexpected – actually, they do the work which humans would find tedious, or even
impossible for larger proofs. Therefore, the presented transformation does not bring
new proof-theory results, but rather focuses on making ATPs more suitable for
certain applications.

Organization of the paper. In Section 2, some background information on co-
herent logic and automated theorem proving in the framework of coherent logic is
given. In Section 3, a proof simplification procedure is presented and its properties
are proven, while in Section 4, the implementation is briefly discussed, followed by
a couple of examples. In Section 5, the related work is presented, and in Section 6,
final conclusions are drawn, and some ideas for further work are given.

2 BACKGROUND

In this section, coherent logic, as the underlying logic of our proof simplification
procedure, is briefly described, and a short overview of different ATPs developed for
coherent logic is given, with an emphasis on the ArgoCLP prover [23].

2 For some reason, Hilbert left this problem out of his seminal list of 23 important
mathematical problems.
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2.1 Coherent Logic

Coherent logic (CL) is a fragment of first-order logic in which all of the formulae are
implicitly universally quantified, and are of the form:

A1(~x) ∧ . . . ∧ An(~x)⇒ ∃~y1 B1(~x, ~y1) ∨ . . . ∨ ∃~ym Bm(~x, ~ym)

where n ≥ 0, m ≥ 0, ~x and ~yj, 1 ≤ j ≤ m denote vectors of variables, Ai, 1 ≤
i ≤ n denote atomic formulae, while Bj, 1 ≤ j ≤ m denote conjunctions of atomic
formulae. It can be considered as an extension of resolution logic, but in contrast
to resolution, in CL the conjecture is not being changed (using clausification or
Skolemization), but directly proved. This is specially important in case when we
are not only interested in the truth value of the statement, but rather in the proof
of the statement. In principle, in CL negations are not allowed; however they can
be used in a limited way – for each predicate symbol R additional predicate symbol
R is introduced and the following additional axioms are used: R(x) ∨ R(x) and
R(x) ∧R(x)→ ⊥.

Skolem was the first to describe CL and the corresponding proof procedure
[22]. In recent years, CL attracted new attention because of its beneficial features.
It is well-suited for producing readable, as well as formal proofs, since it has a
constructive proof system based on forward reasoning, which enables easy generation
of proof objects [6, 10]. Its significance lies in the fact that a number of problems
in different theories can be formulated directly in CL [6]. On the other hand, every
first order logic formula can be translated into CL and then solved using solvers for
CL [19]. As a corollary of the translation, CL is undecidable but semidecidable [6].

We will call a coherent formula branching (with m branches) if m ≥ 2, and non-
branching otherwise3. In the following text, we refer to formulae A1(~x), . . . , An(~x)
as the premises, and to the formula ∃~y1 B1(~x, ~y1) ∨ . . . ∨ ∃~ym Bm(~x, ~ym) as the
conclusion of a given formula.

The following set of inference rules (basically, a subset of Gentzen natural de-
duction rules, and also another version of the rules given in [5]) are the only rules
used in CL4:

A1(~a) ∧ . . . ∧ An(~a)

A1(~a), . . . , An(~a)
∧E A1 ∨ . . . ∨ An

[A1].... c1
B . . .

[An]
.... cn
B

B
∨E ⊥

A
efq

3 Non-branching formula correspond to what is typically called Horn formula, while
branching formula correspond to non-Horn.

4 Prover which uses only these rules can be sound; the prover which, in addition, uses
iterative deepening mechanism descibed in Section 2.2 can be made complete.
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A1(~a), . . . , An(~a) A1(~x) ∧ . . . ∧ An(~x)⇒ ∃~y1 B1(~x, ~y1) ∨ . . . ∨ ∃~ym Bm(~x, ~ym)

B1(~a, ~w1) ∨ . . . ∨Bm(~a, ~wm)
ax

where ~a denotes a vector of constants, and each ~wj, 1 ≤ j ≤ m denotes a vector of
witnesses (these are fresh constants, neither appearing in axioms used, nor in the
conjecture), while ci, 1 ≤ i ≤ n denote chains of inference steps. All of the rules
are given in natural deduction style; rules (∧E), (∨E) and (efq) are standard rules
for the elimination of conjunction, elimination of disjunction, and the rule ex falso
quodlibet. The rule (ax) is applicable only if there are no vectors of witnesses such
that the conclusion already holds.

A proof-search tree in CL is a tree, for which the following holds:

(P1) each node is assigned a set of derived ground atomic formulae (derived
facts);

(P2) each node, except the leaf-nodes, is assigned an axiom application, such
that all of the facts from its premises appear in the set of derived facts of that
node. The set of derived facts of a node is a union of the set of derived facts
of its parent node and the facts from the conclusion of the axiom application
of the parent node (this corresponds to the (ax) rule). If a node is assigned a
branching axiom with m branches, then that node has m child-nodes, and the
facts from the i-th branch of the conclusion of the axiom appear in the set of
derived facts of the i-th child-node.

Assuming that the proof search procedure is sound and complete, a proof tree
exists if and only if a proof-search tree exists. In the text which follows, we will
sometimes treat these two concepts equally, while making distinctions between them
when necessary.

A coherent formula

A1(~x) ∧ . . . ∧ An(~x)⇒ ∃~y1 B1(~x, ~y1) ∨ . . . ∨ ∃~ym Bm(~x, ~ym)

is a CL-theorem if there exist a proof-search tree, for which the following holds:

(T1) the set of derived facts of the root-node consists of instantiated premises
A1(~a), . . . , An(~a) of the conjecture being proven, where ~a denotes a vector of
fresh constants;

(T2) the set of derived facts of each leaf-node contains either all of the conjuncts
of the formula Bj(~a, ~wj), for some j (1 ≤ j ≤ m) and for some vector of constants
~wj, or a contradiction.

2.2 Automated theorem proving in CL

In recent years, Bezem and his coauthors revived an interest for CL. Bezem and
Coquand [6] developed, in Prolog, a CL prover which generates proof objects in Coq.
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Berghofer and Bezem developed, in ML, an internal prover for CL in Isabelle. To our
knowledge, the first ATP using CL was developed by Janičić and Kordić [14], and it
was used for solving theorems from the field of Euclidean geometry. Its extension,
but also a significant improvement, is the ArgoCLP prover [23]. It is an ATP based
on CL, which uses the inference system given in 2.1. Its proving procedure consists of
a forward chaining mechanism with iterative deepening. Constants are enumerated
according to the point of their appearance during the proof search. A dedicated
counter is introduced, and is assigned a value of the maximal permitted value of the
constant which can be used within an axiom application. Initially, it is set to the
number of constants appearing in the premises of the conjecture, and it increases
each time there is no axiom that can be applied. The prover is generic, and it
outputs a formal proof in Isabelle/Isar form, as well as a proof in natural-language
form.

3 TRANSFORMATION PROCEDURE

The goal of the transformation procedure is to transform the correct proof in the
CL framework into a proof of the same conjecture, typically much shorter than the
original one. The procedure consists of three steps:

• eliminating irrelevant nodes (EIN transformation)

• lifting-up nodes through the branching nodes and eliminating repeated nodes
(LUP&ERN transformation)

• reductio ad absurdum (RAA transformation)

The EIN transformation falls into the category of contraction transformations,
and it removes redundant parts of the proof, thus possibly reducing the size of
a proof. More precisely, it eliminates irrelevant nodes from the proof tree. The
LUP&ERN transformation lifts up nodes through the branching nodes to the highest
possible position in the proof tree, and then, if there is multiple occurrence of a node
in a part of the proof between two branching nodes, it is being reduced to only one
appearance. In this way if there is a node appearing in different branches of the same
branching and if it does not depend on any of branching assumptions, it would occur
just once in a simplified proof tree above the branching node, thus reducing the size
of the proof. So, it is a contracting transformation, as well as a restructuring one.
On the other hand, the RAA transformation belongs to the category of restructuring
transformations, as it rearranges the structure of the proof tree in order to make it
more readable and more alike to traditional proofs. It converts the proof tree into
the reductio ad absurdum form, if possible.

The proof simplification transformation (PST transformation) is defined as a
composition of RAA, LUP&ERN and EIN transformation:

PST = RAA ◦ LUP&ERN ◦ EIN
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It takes place post-festum, once a conjecture has already been proven.
To improve the readability of the paper, we introduce the following definitions:

Definition 3.0.1. proof(φ,∆) denotes that ∆ is a proof of the theorem φ.

Definition 3.0.2. The size of a proof tree is the number of nodes in the tree.

3.1 The EIN transformation

Let us suppose that a proof-trace constructed using inference rules from 2.1 is given.
In the following text, instead of considering a proof-trace as a sequence of inference
steps, we will be considering its corresponding proof tree. For each node in the proof
tree, it is determined whether it is relevant for the proof or not. All of the nodes
which are irrelevant for the present proof are eliminated from it, thereby obtaining
a “clean” proof.

Definition 3.1.1. A node in a proof tree is relevant if the axiom application oc-
curring within it derives at least one fact (in each of the branches, if the node is
branching) which is needed for deriving the conclusion of the conjecture being proven
(or a contradiction) in all of the corresponding leaf-nodes. Otherwise, we say that
the node is irrelevant.

Since the relevance of a node depends strongly on its attached axiom application,
we sometimes refer to a node by referring to its axiom application.

In order to determine if a node is relevant, the set R of relevant objects in the
set of currently processed nodes of the proof tree is maintained. Objects which are
allowed to appear in the set R are only atomic ground formulae (facts). Initially, R
is set to be an empty set. Since for each node it has to be determined if the facts it
derives are used in its subtree, it is necessary to gather all of the information about
its subtree before processing a node. So, the EIN procedure starts from the last
node in the proof tree (the right-most leaf-node of the tree). Afterwards, the proof
tree is traversed backwards, from the last node of the proof tree to the first one, i.e.
opposite to DFS traversal. Each node is processed according to its type – whether
it is non-branching or branching.

Processing a non-branching node: the axiom application of a non-branching
node is of the following form:

A1(~a) ∧ . . . ∧ An(~a)⇒ B1(~a, ~w) ∧ . . . ∧Bk(~a, ~w)

where n ≥ 0, k ≥ 0, ~a denotes a vector of constants, ~w denotes a vector of witnesses
(which can also be an empty vector), and Ai, 1 ≤ i ≤ n, as well as Bj, 1 ≤ j ≤ k,
denote atomic formulae. In this case, if, for some j, it holds that the fact Bj(~a, ~w)
is found in the set of relevant objects R at the moment of node traversal, then this
node is found to be relevant, and the set R is being updated in the following manner:
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all of the facts from its conclusion (Bj(~a, ~w), 1 ≤ j ≤ k) are removed from R (if
they are found there), while all of the facts from its premises (Ai(~a), 1 ≤ i ≤ n) are
added to the set R. Otherwise, the node is denoted as irrelevant, and no changes
are made to the set R.

As soon as the theorem is proven in a certain branch, that branch is closed.
Therefore, all of the leaf-nodes of the proof-search tree (ones deriving the conclusion
or a contradiction) are a priori marked as relevant and, accordingly, all of the facts
from their premises are added to the set R in the moment of their traversal.

Example 1: A proof of a theorem T : A(x) ∧ B(y)→ F (x, y) using the axiom
system: A1 : A(x)→ C(x), A2 : A(x)→ D(x)∧E(x), A3 : C(x)∧B(y)→ F (x, y)
is presented in Figure 1a. The proof is given in a tree-form for a better readability.
For clearer presentation, a node is presented by its axiom application only (along
with the axiom label), while its set of derived facts is omitted. This actually means
that in each node of a tree a conclusion of presented axiom application is derived
and added to the set of derived facts. Initially, the conjecture is instantiated by
introducing two new constants a and b and replacing universally quantified variables
x and y by these constants. The goal is to prove the conclusion F (a, b) using given
set of axioms and the two assumptions A(a) and B(b). This has been stated in the
header row of the proof. The nodes are enumerated in the order they are visited
during a depth-first traversal of the proof tree.

A(a), B(b) ` F (a, b)

n1 : A(a)→ C(a) (A1)

n2 : A(a)→ D(a) ∧ E(a) (A2)

n3 : C(a) ∧B(b)→ F (a, b) (A3)

(a) The non-simplified proof

A(a), B(b) ` F (a, b)

n1 : A(a)→ C(a) (A1)

n3 : C(a) ∧B(b)→ F (a, b) (A3)

(b) The simplified proof

Fig. 1: Eliminating non-branching nodes

The EIN procedure starts from the leaf-node n3 of the proof tree, and the set R is
initialized to {C(a), B(b)}. Next, node n2 is processed, and it is deemed irrelevant,
as none of the facts from its conclusion (neither D(a) nor E(a)) are present in the
set R. Finally, the root-node n1 is relevant since the fact C(a) appears in the set
R, and the fact C(a) is substituted by the fact A(a) in R. So, at the end, the set
R contains the facts {A(a), B(b)}, which are the premises of the theorem T . The
simplified proof of the theorem T , consisting of nodes n1 and n3 is given in Figure
1b.

Processing a branching node: the axiom application of a branching node is of
the following form:

A1(~a) ∧ . . . ∧ An(~a)⇒ B1(~a, ~w1) ∨ . . . ∨Bm(~a, ~wm)
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where n ≥ 0, m ≥ 2, ~a denotes a vector of constants, ~wi, 1 ≤ i ≤ m, denote
vectors of witnesses (which can be also an empty vector), Ai, 1 ≤ i ≤ n, denote
atomic formulae, while Bj, 1 ≤ j ≤ m, denote conjunctions of atomic formulae:

Bj = B1
j ∧ . . . ∧ B

kj
j . A branching node has the same number of child-nodes as the

number of disjuncts in its axiom, and we will refer to each child-node as an assuming
node (as it “assumes” that Bj holds), and to Bj as a branching assumption.
A branching node is relevant only if the derivations performed in every branch
need their branching assumptions (Bj) for deriving the conclusion of the conjecture
(or a contradiction). This actually means that, for each of the branches, it holds
that at least one fact from its branching assumption is found in the set R at the
moment of processing the assuming node of that branch. If that is not the case,
then the branching is obsolete, the branching node along with other branches can be
eliminated from the proof tree, and from that point, only the derivation conducted
in the branch which is not using its branching assumption can be kept in the proof
tree5. In the case in which that branch is closed by a contradiction, it can be
concluded that the starting conjecture is contradictory. In this case, no changes are
made to the set R.

On the other hand, if the branching node is marked as relevant, then all of the
facts from the conclusion (from each Bj(~a, ~wj), 1 ≤ j ≤ m) are erased from the set
R, while all of the facts from its premises (Ai(~a), 1 ≤ i ≤ n) are added to the set R.

A(a), B(b) ` F (a, b)

n1 : D(a) ∨ C(a) (A1)

n2 : [D(a)]

n3 : D(a) ∧B(b)→ F (a, b) (A2)

n4 : [C(a)]

n5 : A(a)→ G(a, c) (A3)

n6 : G(a, c) ∧B(b)→ F (a, b) (A4)

(a) Nonsimplified proof

A(a), B(b) ` F (a, b)

n5 : A(a)→ G(a, c) (A3)

n6 : G(a, c) ∧B(b)→ F (a, b) (A4)

(b) Simplified proof

Fig. 2: Eliminating branching nodes

Example 2: Let us consider a proof of the same theorem T : A(x) ∧ B(y) →
F (x, y) as in the previous example, within another axiom system A1 : D(x) ∨
C(x), A2 : D(x) ∧ B(y) → F (x, y), A3 : A(x) → G(x, y), A4 : G(x, y) ∧ B(z) →
F (x, z), which is given in Figure 2a. Initially, R is set to {G(a, c), B(b)} and during
the traversal of the node n5, the conclusion fact G(a, c) is erased and the fact A(a) is
added to the set R. It can be seen that, at the moment of processing the assuming
node n4, its branching assumption C(a) is not found in the set R, therefore the
whole proof can be substituted by a shorter, non-branching one, which consists only

5 If there is more than one branch which is not using its branching assumption, any
one of these branches can be chosen to be kept in the proof.
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from the nodes n5 and n6. Once the transformation procedure has terminated (the
root-node of the proof tree has been processed), the set R contains only instantiated
premises of the conjecture being proven (meaning that all of the necessary informa-
tion needed to prove the conjecture are given in its premises). More precisely, the
set R is equal to a subset of instantiated premises; if it is a proper subset, then some
premises of the conjecture are redundant and the conjecture can be proven without
using them.

In Algorithm 1, we give the pseudocode of the EIN transformation. We assume
that each node has a field children num containing number of child-nodes, as well
as a vector child containing child-nodes. Also, R is a global variable initially set to
be the empty set.

The EIN transformation preserves, in the “clean” proof, only the nodes which are
determined to be relevant. It is to be shown in Section 3.2 that the newly constructed
object is still a proof of the same conjecture. Moreover, after the transformation
stops, the proof tree does not contain any irrelevant nodes.

Example 3: A set of axioms (A1)–(A9) and a conjecture (C) are given:

(A1): ∀x A(x)→ E(x)

(A2): ∀x A(x)→ I(x)

(A3): ∀x B(x)→ H(x)

(A4): ∀x C(x) ∧ I(x)→ J(x)

(A5): ∀x ∀y ∀z G(x, y) ∧B(z)→ F (x, z)

(A6): ∀x ∀y D(x) ∧H(y)→ F (x, y)

(A7): ∀x D(x) ∨ C(x)

(A8): ∀x (B(x) ∧K(x)) ∨D(x)

(A9): ∀x A(x) ∧B(x)→ ∃y G(x, y)

(C): ∀x ∀y A(x) ∧B(y)→ F (x, y)

A proof of conjecture C, using the axiom system given above, is shown in Figure
3. The proving process starts with the facts A(a) and B(b), and its aim is to derive
the fact F (a, b) (or to show that the premises are inconsistent in the given set
of axioms). In this example, all of branches are closed by the derivation of the
conclusion of the conjecture (F (a, b)). As it can be seen, the rote-node n1 in the
generated proof-search tree is not relevant for the proof since the derived fact E(a)
is not used anywhere further in the proof. Similarly, the node n8 is not relevant
since the fact it derives (J(a)) is not used afterwards in that branch. So, the proof
could be simplified.
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Algorithm 1 EIN(r)

Require: r - root-node of a proof tree
Ensure: simplified proof tree of the same conjecture
children num← r.children num
A← ⋃

i=1..nAi(a) {Ai(a), 1 ≤ i ≤ n are the premises of the axiom application of
the node r}
if children num = 0 then {a leaf-node}
R← R ∪ A {updating the set of relevant objects}
return r {all of the leaf-nodes are initially marked as relevant}

else if children num = 1 then {a non-branching node}
r0 ← EIN(r.child[0]) {r0 is a root-node of the simplified subtree}
B ← ⋃

j=1..k B
j(a, w) {B =

∧
1≤j≤k B

j(a, w) is the conclusion of the axiom
application of the node r}
if R ∩B 6= ∅ then {node r is relevant}
r.child[0]← r0
R← (R \B) ∪ A {updating the set of relevant objects}
return r

else {node r is irrelevant}
return r0

end if
else {a branching node}

for j = children num− 1 downto 0 do
R← ∅
Bj ←

⋃
k=1..kj B

k
j (a, wj) {Bj =

∧
1≤k≤kj B

k
j (a, wj) is the j-th branching as-

sumption of the axiom application of the node r}
rj ← EIN(r.child[j]) {rj is a root-node of the simplified j-th subtree}
if R ∩Bj 6= ∅ then {this branch needs its assumption}

(r.child[j])← rj
Rj ← R {the set of relevant facts for this branch is kept in variable Rj}

else {this branch does not need its assumption}
return rj {other branches and the branching node are erased from the
proof tree}

end if
end for
R← ⋃

j=1..children numRj \ A
return r {all of the branches are relevant, the branching node is kept}

end if

The transformation procedure would find the first branching node n4 irrelevant,
since the branching assumption C(a) is not used for deriving the conclusion in the
second branch (however, it is used in the node n8, but, as it is already noticed, this
node is irrelevant for the proof). On the contrary, the second branching node n9

would be marked as relevant since there exists a fact in both branching assumptions
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(B(a) in the first one, and D(a) in the second) which are used in the derivation of
the formula F (a, b) (each of them in its own branch). Therefore, only the second
branch of the first branching is to be kept in the “clean” proof, with all of the
irrelevant non-branching nodes (n1, n2, n8, n11) eliminated. Finally, after the EIN
transformation stops, the proof would have the tree-structure shown in Figure 4.

A(a), B(b) ` F (a, b)

n1 : A(a)→ E(a) (A1)

n2 : A(a)→ I(a) (A2)

n3 : B(b)→ H(b) (A3)

n4 : D(a) ∨ C(a) (A7)

n5 : [D(a)]

n6 : D(a) ∧H(b)→ F (a, b) (A6)

n8 : C(a) ∧ I(a)→ J(a) (A4)

n9 : (B(a) ∧K(a)) ∨D(a) (A8)

n10 : [B(a) ∧K(a)]

n11 : B(a)→ H(a) (A3)

n12 : A(a) ∧B(a)→ G(a, c) (A9)

n13 : G(a, c) ∧B(b)→ F (a, b) (A5)

n14 : [D(a)]

n15 : D(a) ∧H(b)→ F (a, b) (A6)

Fig. 3: Initial proof

Alternatively, a derivation conducted in the simplified proof, can be given also
in natural deduction style, as in (1):

(B(a) ∧K(a)) ∨D(a) (2) (3)

F (a, b)
∨E

(1)

where (2) and (3) denote the following proof-fragments:

A(a)

[B(a) ∧K(a)]

B(a)
∧E

A(x) ∧B(x)⇒ G(x, y)

G(a, c)
ax

B(b) G(x, y) ∧B(z)⇒ F (x, z)

F (a, b)
ax

(2)

[D(a)]

B(b) B(x)⇒ H(x)

H(b)
ax

D(x) ∧H(y)⇒ F (x, y)

F (a, b)
ax

(3)
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A(a), B(b) ` F (a, b)

n3 : B(b)→ H(b) (A3)

n9 : (B(a) ∧K(a)) ∨D(a) (A8)

n10 : [B(a) ∧K(a)]

n12 : A(a) ∧B(a)→ G(a, c) (A9)

n13 : G(a, c) ∧B(b)→ F (a, b) (A5)

n14 : [D(a)]

n15 : D(a) ∧H(b)→ F (a, b) (A6)

Fig. 4: Simplified proof

3.2 Properties of the EIN transformation

In this section, some important properties of the EIN transformation are shown.
They state that the EIN transformation outputs a valid proof of the same conjecture,
which is at most the same size as the initial one, and which has no irrelevant steps.

Lemma 3.2.1 (Correctness of EIN). If proof(φ,∆) then proof(φ,EIN(∆)).

Proof. First, we need to prove that the newly constructed object EIN(∆) is a
proof. We will show that EIN(∆) satisfies the properties (P1) and (P2). The
property (P1) trivially holds, since it already holds for ∆, and the set of nodes of
EIN(∆) is a subset of the set of nodes of ∆.

Let us suppose that EIN(∆) contains a node such that there exists a fact F
from the premises of its axiom, which is not found in the set of derived facts of that
node. Since the node belongs to EIN(∆), it means that during the transformation
process and the backward traversal of the tree, after it had been processed, the fact
F has been added to the set of relevant objects. Accordingly, a node which contains
the application of an axiom which concludes F somewhere earlier in ∆ (and it has to
exist in ∆, since it is a valid proof tree) would be added to EIN(∆). Hence, the fact
F is found in the set of derived facts of that node, which leads to a contradiction.
Therefore, our assumption was wrong, meaning that for each node in EIN(∆) all of
the facts from the premises of its axiom are found in the set of derived facts of that
node. So, EIN(∆) satisfies the property (P2) also. Therefore, EIN(∆) is, indeed,
a valid proof.

Is it a proof of a given conjecture φ? We need to show that properties (T1) and
(T2) hold for the proof EIN(∆) and the formula φ.

Let us denote the root-node of EIN(∆) with n1 and the root-node of ∆ with
n2. Assume that the set of derived facts of the node n1 contains a fact F which
is not from the set of premises of the conjecture φ. Since the set of derived facts
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of the node n2 does not contain F , it holds for proof ∆ that the node n1 is a
descendant of the node n2 and one of the nodes on the path from the node n1 to the
node n2 concluded the fact F . But in that case, according to the transformation
specification, that node would be added to EIN(∆), and since it is an ancestor of
the node n1, the node n1 would not be a root-node of EIN(∆). A contradiction.
Therefore, the root-node of EIN(∆) contains only the facts from the premises of
the conjecture φ, thus EIN(∆) satisfies the property (T1).

According to the specification of the transformation, the set of leaf-nodes of
EIN(∆) is a subset of the set of leaf-nodes of ∆ (since each leaf-node is initially set
to be relevant and can only be eliminated from the simplified proof tree together
with the entire branch), hence EIN(∆) satisfies the property (T2). So, EIN(∆) is
a proof of the conjecture φ.

2

Lemma 3.2.2 (Termination of EIN). The procedure of eliminating irrelevant no-
des is terminating.

Proof. The EIN transformation is based on proof tree traversal and the processing
of each node of the tree is done only once, and in constant time. Moreover, in the
case when there is a branching node in the proof tree which is not relevant and the
branch which is kept is not the first one, the nodes from the branches preceding the
one kept in the proof tree will not be traversed. More precisely, if we denote by T (n)
the total number of recursive calls for the tree having n nodes, then the following
holds:
T (1) = 1,
T (n) ≤ ∑

i T (ni) + 1, where
∑
ni = n− 1.

This gives us that T (n) ≤ n− 1 and this can be showed using induction. Since each
node is processed in constant time this implies that the whole procedure works in
O(n) time. So, the EIN procedure does terminate, and its time complexity is linear
w.r.t. the size of the input proof tree. 2

Lemma 3.2.3 (Idempotence of EIN). The procedure of eliminating irrelevant no-
des does not introduce irrelevant nodes, therefore: EIN(EIN(∆)) = EIN(∆)

Proof. Let us denote EIN(∆) with ∆1. Our goal is to prove that EIN(∆1) = ∆1,
i.e. that all of the nodes in the proof ∆1 are relevant for the proof ∆1. This can be
proven by using mathematical induction on the height of the node in the proof tree.

1. base case: all of the leaf-nodes (nodes of height 0) of ∆1 are relevant, by the
specification of the procedure

2. inductive step: assuming that this property holds for all of the nodes of height
k, we show that it holds for a node n of height k + 1. Recall that the set R is
not changed during the processing of irrelevant nodes, and that the relevance
of a node depends only on its descendants. All of the descendants of the node
n are relevant by inductive hypothesis (since their height in the proof tree is
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smaller), which gives that during the construction of EIN(∆1) at the moment
of traversal of node n the set R contains the same facts it had contained during
the construction of ∆1. Considering that the node n was set to be relevant then,
the same is concluded now. Therefore, the node n (of height k + 1) is relevant.

Therefore, all steps in the proof ∆1 are relevant for the proof ∆1, meaning that
EIN(∆1) = ∆1. 2

Lemma 3.2.4 (Non-increasing size of EIN). size(EIN(∆)) ≤ size(∆).

Proof. The EIN transformation affects the proof in the sense that it can erase some
of the nodes from the proof tree (sometimes even complete branches), but never add
a node. Therefore, it holds that size(EIN(∆)) ≤ size(∆). 2

3.3 The LUP&ERN transformation

We will call a subtree ni, ni+1, . . . , nk of the proof tree n1, n2 . . . , ns linear if none of
the nodes in the subtree is a branching node. Linear subtree is maximal if it cannot
be extended by any of its subsequent nodes in a proof tree (ni−1 or nk+1) and still
remain linear.

After the EIN transformation stops, there will be no more irrelevant nodes in
the proof tree. However, the principle of parsimony could still be violated since the
same fact could be derived in different branches of the same branching. In case when
the node which derives that fact does not use neither the branching assumption, nor
any conclusion derived on the path from the branching assumption to that node, it
could be lifted-up above the branching node. This becomes especially useful when
there are more occurrences of the same node in different branches, since once they
are lifted-up above the branching, their multiple occurrence could be replaced with
just one, decreasing the size of the proof tree.

On the other hand, even after elimination of all irrelevant nodes, the obtained
proof tree could have a linear subtree of a form: ni : A→ B, ni+1 : B → A, . . . , nk−1 :
A→ B, nk : B → A, etc. This subtree can be reduced to: ni : A→ B, ni+1 : B → A.
So in each maximal linear subtree of the proof tree multiple occurrences of the same
node should be eliminated.

For this step of simplification procedure we will use a dependency matrix Md,
which is a quadratic matrix whose dimension is equal to the size of proof tree
obtained after the EIN transformation. It is initially set to zero matrix. Assume
that nodes are enumerated in the order they are visited during a depth-first traversal
of the proof tree. For each node ni and for each fact from its set of premises, the node
nj preceding it which derives that fact is found and Md(i, j) is set to 1. Afterwards,
for each row r of the matrix Md the maximal index c of the column containing 1 is
found, and in case when there exists a branching node between nodes nc and nr the
node nr is erased, and inserted at the position preceding that branching node. This
is repeated as far as there are candidate nodes for switching their position. Finally,
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for each maximal linear subtree of the proof tree possible multiple occurrences of
nodes are identified and eliminated, leaving just one occurrence of each node.

Example 4: Let us consider a proof of the theorem T : A(x)∧B(y)→ F (x, y, z),
within the axiom system A1 : A(x) → H(x), A2 : C(x) ∨ D(x), A3 : C(x) ∧
E(y, z) → F (x, y, z), A4 : D(x) ∧ E(y, z) → F (x, y, z), A5 : B(x) → E(x, y),
which is given in Figure 5. The node n4 could be lifted up to the position above
the branching node n2, since its set of instantiated premises (B(b)) does not depend
neither on the branching assumption (C(a)), nor any of the nodes in between the
branching assumption and the node itself. The same argument applies to the node
n7. So, the intermediate proof tree given in Figure 6 would be obtained. Afterwards,
the two occurrences of the same node (n2 and n3 in new notation) would be shortened
to only one, thus obtaining the proof tree shown in Figure 7.

A(a), B(b) ` F (a, b, c)

n1 : A(a)→ H(a) (A1)

n2 : C(a) ∨D(a) (A2)

n3 : [C(a)]

n4 : B(b)→ E(b, c) (A5)

n5 : C(a) ∧ E(b, c)→ F (a, b, c) (A3)

n6 : [D(a)]

n7 : B(b)→ E(b, c) (A5)

n8 : D(a) ∧ E(b, c)→ F (a, b, c) (A4)

Fig. 5: Proof after EIN transformation

3.4 Properties of the LUP&ERN transformation

In this section, the same properties which have been proven for the EIN transfor-
mation are shown to be true for LUP&ERN transformation as well.

Lemma 3.4.1 (Correctness of LUP&ERN). If proof(φ,∆) then
proof(φ, LUP&ERN(∆)).

Proof. We will show that properties (P1) and (P2) hold. All nodes of the new tree
are nodes of the initial proof tree, therefore property (P1) trivially holds. Property
(P2) also holds since all nodes of the initial proof tree that used the facts which
that node derives are also below it in a new proof tree, and all facts from its set
of premises are derived above its new position (which is guaranteed by the LUP
algorithm itself). The tree obtained afer ERN transformation procedure is a proof
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A(a), B(b) ` F (a, b, c)

n1 : A(a)→ H(a) (A1)

n2 : B(b)→ E(b, c) (A5)

n3 : B(b)→ E(b, c) (A5)

n4 : C(a) ∨D(a) (A2)

n5 : [C(a)]

n6 : C(a) ∧ E(b, c)→ F (a, b, c) (A3)

n7 : [D(a)]

n8 : D(a) ∧ E(b, c)→ F (a, b, c) (A4)

Fig. 6: Proof after LUP transformation

A(a), B(b) ` F (a, b, c)

n1 : A(a)→ H(a) (A1)

n2 : B(b)→ E(b, c) (A5)

n3 : C(a) ∨D(a) (A2)

n4 : [C(a)]

n5 : C(a) ∧ E(b, c)→ F (a, b, c) (A3)

n6 : [D(a)]

n7 : D(a) ∧ E(b, c)→ F (a, b, c) (A4)

Fig. 7: Proof after ERN transformation

tree since all facts derived by erased (duplicated) nodes are still derived in a new
tree (only this time just once, instead of potentially many times). 2

Lemma 3.4.2 (Termination of LUP&ERN). The procedure of lifting-up and eli-
minating repeated nodes is terminating.

Proof. The procedure terminates since there is a finite number of branching nodes
in the proof tree. Since the LUP procedure moves the nodes appearing below the
branching node to the position above the branching node, it can be applied at most
the number of times equal to the number of non-branching nodes in the proof tree,
which is in worst case equal to O(size(∆)). In each iteration of the LUP procedure,
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the dependency graph Md is computed, which has the time complexity O(size(∆)2).
Then for each row of the matrix Md the last value equal to 1 is being sought, and if a
branching node was found before that value, the corresponding node would be lifted-
up to the position above that branching node – this takes O(size(∆)) time. After
the LUP procedure stops, repeated nodes are being eliminated – for each maximal
linear subtree of the proof ∆ all pairs of steps are being tested for equality and if
two steps are found equal – one of them is being erased. This takes O(size(∆)2)
time. Altogether LUP&ERN procedure takes O(size(∆)3) time in worst case. 2

Lemma 3.4.3 (Idempotence of LUP&ERN). The procedure of lifting-up and eli-
minating repeated nodes is idempotent, i.e.:
LUP&ERN(LUP&ERN(∆)) = LUP&ERN(∆)

Proof. The LUP&ERN procedure stops when there are no more nodes that could
be lifted-up through the branching node and when all repeated nodes are erased.
Therefore, applying the procedure once again would not change the proof tree, since
there would be no candidate nodes neither for lifting-up, nor for elimination of
repeated nodes. 2

Lemma 3.4.4 (Non-increasing size of LUP&ERN).

size(LUP&ERN(∆)) ≤ size(∆)

.

Proof. Lifting-up procedure does not change the size of the proof tree, while the
elimination of repeated nodes can decrease its size, so altogether the new size of the
proof tree is less or equal to the size of the initial proof tree. 2

3.5 Reductio ad absurdum (RAA)

In CL, negation is not used. However, negation of predicate can be “simulated” by
introducing a new symbol P which has a role of ¬P [19], supported by the axioms
P ∧P ⇒ ⊥ and P ∨P . Note that these axioms are only specific instances of tertium
non datur (introduced to model the original, possibly classical-logic initial axiom
system), but the obtained deductive system still remains intuitionistic.

The RAA transformation procedure consists of converting proof fragments into
the reductio ad absurdum form. We use the classical version of RAA transformation,
meaning that it holds that ¬¬A→ A. This transformation is particularly significant
for proofs given in natural-language form, since proofs in reductio ad absurdum
form closely resemble proofs found in mathematical textbooks. This is important,
as proofs obtained in the framework of coherent logic can easily be translated into
natural-language form, as in [23]. In this way, when the RAA transformation is
applied, the result is a proof, which has no redundancy and which consists of steps
which are typical for traditional proofs.
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For convenience, the set of inference rules is expanded by the rules:

[P ]
....
⊥
P
¬I1

[P ]
....
⊥
P
¬I2

where P denotes an atomic formula. These two rules are derived from the axiom
P ∨ P and the rule (∨E).

We will also consider an extended notion of proof in which, instead of having
the property (P2), the following property holds:

(P2’) for each node, either the property (P2) holds, or an application of the (¬I1)
or (¬I2) inference rule is assigned to the node – in that case, the set of derived
facts of that node contains ⊥, while the set of derived facts of the child-node is
the same as the set of derived facts of the ancestor node, with the assumption
fact substituted by its negation, or in the case when the assumption is a negation
of a fact by the fact itself.

This type of proof will be called extended proof.

The RAA transformation is applicable in cases in which a proof-trace contains
an axiom application of the form P ∨ P to some vector of constants ~a, and where
one of the two branches is closed by a contradiction. If the first branch is closed by
a contradiction, we can, instead of the application of the axiom P ∨ P , assume the
assumption of the first branch P (~a), use the same sequence of inference steps used
in the first branch, derive a contradiction, and conclude, by the newly introduced
rule ¬I1, that P (~a) holds. If the second branch is closed by a contradiction, we can
assume the assumption of the second branch P (~a), use the sequence of inference
steps used in the second branch, derive a contradiction, and conclude, by the newly
introduced rule ¬I2, that P (~a) holds.

G.... c1
P (~a) ∨ P (~a)

[P (~a)]
.... c2
⊥
F
eqf

[P (~a)]
.... c3
F

F
∨E →

G.... c1
[P (~a)]

.... c2
⊥

P (~a)
.... c3
F

¬I1

(4)
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G.... c4
P (~a) ∨ P (~a)

[P (~a)]
.... c5
F

[P (~a)]
.... c6
⊥
F
eqf

F
∨E →

G.... c4
[P (~a)]

.... c6
⊥

P (~a)
.... c5
F

¬I2

(5)

The RAA transformation is shown in (4) and (5). Chains of inference steps are
denoted by ci, 1 ≤ i ≤ 6, G denotes the premises, while F denotes the conclusion of
the conjecture being proven.

It should be noticed that, because of the introduction of (¬I1) and (¬I2) rules,
the tree structure obtained by application of RAA transformation does not satisfy
the proof property (P2) any more, but satisfies the property (P2’) instead. There-
fore, the obtained proof is an extended proof.

3.6 Properties of RAA

In this section, the RAA transformation is proven to be correct, terminating, idem-
potent and non-increasing in size.

Lemma 3.6.1 (Correctness of RAA). If proof(φ,∆) then proof(φ,RAA(∆)).

Proof. This follows straightforwardly from the specification of the transformation.
As it has already been mentioned, the obtained proof is an extended proof. 2

Lemma 3.6.2 (Termination of RAA). The reductio ad absurdum procedure is ter-
minating.

Proof. The number of instances of the axioms of the form P ∨ P in the proof is
finite. Therefore, procedure is terminating. During one traversal of a proof tree,
an information whether the node is a candidate for RAA transformation (if all the
leaf-nodes in one of two branches are closed by a contradiction) is assigned to all of
the branching nodes. After that, it takes one more proof tree traversal to transform
a tree into the reductio ad absurdum form. Therefore, the time complexity of the
RAA procedure is linear w.r.t. the size of the input proof tree. 2

Lemma 3.6.3 (Idempotence of RAA). The reductio ad absurdum procedure is i-
dempotent, meaning: RAA(RAA(∆)) = RAA(∆).

Proof. If we denoteRAA(∆) with ∆1, the objective is to prove thatRAA(∆1) = ∆1.
The RAA transformation eliminates from the proof all of the instances of the axioms
of the form P ∨ P , where one branch is closed by a contradiction. Therefore, ∆1

does not contain any node which is a candidate for RAA transformation, meaning
RAA(∆1) = ∆1. 2
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Lemma 3.6.4 (Non-increasing size of RAA). size(RAA(∆)) = size(∆).

Proof. The RAA transformation consists of a simple restructuring of a proof tree.
The original tree and the reduced one do have different structures, but still the same
number of nodes. So it holds that: size(RAA(∆)) = size(∆). 2

3.7 Properties of PST

Putting together the properties proven for the EIN, LUP&ERN and RAA trans-
formations in the previous sections, the PST transformation can be shown correct,
terminating and non-increasing in size.

Theorem 3.7.1 (Correctness of PST ). If proof(φ,∆) then proof(φ, PST (∆)).

Proof. The correctness of PST follows directly from the definition of PST, Lemma
3.2.1, Lemma 3.4.1 and Lemma 3.6.1. 2

Theorem 3.7.2 (Termination of PST ). Proof simplification transformation is ter-
minating.

Proof. According to Lemma 3.2.2, Lemma 3.4.2 and Lemma 3.6.2EIN , LUP&ERN
and RAA transformations terminate, so PST , as their composition, terminates as
well. 2

Theorem 3.7.3 (Non-increasing size of PST ). size(PST (∆)) ≤ size(∆).

Proof. Using Lemma 3.2.4, Lemma 3.4.4 and Lemma 3.6.4 the following holds:

size(PST (∆)) = size(RAA(LUP&ERN(EIN(∆))))

= size(LUP&ERN(EIN(∆))) ≤ size(EIN(∆)) ≤ size(∆)

2

It can be noticed that PST does not have the idempotence property. This is
because a proof in reductio ad absurdum form, as an extended proof, does not
necessarily satisfy proof property (P2) and, because of that, it is not possible to
apply again the EIN transformation to it. However, if redundant nodes would be
defined for extended proof analogously as for the basic proofs, it could be easily
proven that PST (∆) would not contain redundant nodes. Also, new applications of
(¬I1) and (¬I2) rules would not be possible.

4 IMPLEMENTATION AND EXAMPLES

The presented transformation system has been implemented within the ArgoCLP
prover [23] 6. It is a generic theorem prover for coherent logic, developed in C++.

6 The ArgoCLP prover, together with a proof simplification module, is available on-line
from http://poincare.matf.bg.ac.rs/~vesnap/ArgoCLP_v4.zip .
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After the theorem is proven and corresponding proof-trace generated, all of the irrel-
evant steps are eliminated from the proof-trace using the simplification tool which
implements the proposed transformation system. The length of the proof-trace is
often significantly shortened. This simplified proof-trace can then be exported to
the Isabelle/Isar format, and checked formally for correctness within the Isabelle
proof assistant7. This is important, as it guarantees that the simplified proof-trace
still represents a proof of the same theorem8.

Proofs are rarely presented in the textbooks in a tree-form (like in natural de-
duction). To make proofs more alike the proofs from mathematical textbooks, a
transformation into the block-structured form is needed9. This is done in the fol-
lowing way – whenever an assumption is performed the paragraph is indented by
one more tab, and when the branch corresponding to that assumption is closed the
indentation is returned to the previous value. In this way fragments of the proof that
belong to a subproof are not marked by a line or a rectangle, but logically separated
from the rest of the proof. So, once a proof-trace is simplified, it is translated in
this way to a natural-language form (in English, in LATEX format).

A prover with this additional simplification tool was tested on theorems from
the field of Euclidean geometry within four different axiom systems [23]. In this way
26 proof-traces were generated and afterwards simplified, using our simplification
tool. The simplification identified four of them as axioms (since the simplified proof-
trace had a length of just one step – which is an application of the axiom they were
equivalent to, while the longest of these non-simplified traces was 28 steps long).
These four examples were discarded from further analysis, and for the remaining 22
examples, the average percentage of irrelevant steps was calculated. For our corpus,
the average percentage of irrelevant steps was 61.8%, meaning that more than half
of the steps in the automatically generated proofs were redundant. Also, the longer
the generated proof, the greater its percentual shortening.

Five automatically generated proofs, three from the field of geometry, one from
the field of term rewriting theory, and another one from the field of metric spaces,
given in a natural-language form, are listed below as illustrations. For the first
theorem, the non-simplified proof-trace, which was generated automatically, using
the ArgoCLP prover, is 54 steps long; after the simplification takes place it has only 8
steps. For the second example, simplification procedure shortened the proof from 219
to 10 steps. The third proof was 62 steps long, and simplification process shortened
it to 16 steps. In this proof some duplicated steps were identified after lifting-up
transformation and they were erased from the proof, leaving just one occurrence
for each of them. The non-simplified version of the fourth proof has 35 steps,
while the simplified version has 21 steps (in the term rewriting example, negations

7 This also holds for the non-simplified proof-trace.
8 However this does not guarantee that the proposed transformation procedure is for-

mally correct – that could be achieved only by verification of the transformation procedure
itself within some proof assistant.

9 The format used is similar to the format used by systems like Isar [16] or Athena [2].
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were not allowed as predicates and, therefore, only the EIN and the LUP&ERN
transformations were performed). For the fifth theorem, the proof was 141 steps
long, and the simplification procedure shortened it to only 7 steps.

The first theorem states that, for each two planes, it holds that they do not
intersect or there is a line which belongs to both of them. It was proven using
Hilbert’s axiom system for Euclidean geometry [13].

Theorem TH geo1:

Show that the plane α and the plane β do not intersect or there exist a line p such
that the line p is incident to the plane α and the line p is incident to the plane β.

Proof:

1. It holds that the plane α and the plane β intersect or the plane α and the plane β do
not intersect (by axiom ax D8a).

2. Assume that the plane α and the plane β intersect.

3. From the facts that the plane α and the plane β intersect, there exist a point A
such that the point A is incident to the plane α, the point A is incident to the plane
β and α 6= β (by axiom ax D8).

4. From the facts that α 6= β, the point A is incident to the plane α, and the point
A is incident to the plane β, there exist a point B such that A 6= B, the point B is
incident to the plane α and the point B is incident to the plane β (by axiom ax I7).

5. From the facts that A 6= B, there exist a line p such that the point A is incident
to the line p and the point B is incident to the line p (by axiom ax I1).

6. From the facts that the point A is incident to the line p, A 6= B, the point B
is incident to the line p, the point A is incident to the plane α, and the point B is
incident to the plane α, it holds that the line p is incident to the plane α (by axiom
ax I6).

7. From the facts that the point A is incident to the line p, A 6= B, the point B
is incident to the line p, the point A is incident to the plane β, and the point B is
incident to the plane β, it holds that the line p is incident to the plane β (by axiom
ax I6).

This proves the conjecture.

8. Assume that the plane α and the plane β do not intersect.

This proves the conjecture.

Theorem proved in 8 steps and in 0.6 s.

The following theorem states that if two distinct planes contain a point and a
line, then the point must lie on that line.

Theorem TH geo2:

Assuming that α 6= β, the line p is incident to the plane α, the line p is incident to the
plane β, the point A is incident to the plane α, and the point A is incident to the plane
β, show that the point A is incident to the line p.

Proof:
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Let us prove that the point A is incident to the line p by reductio ad absurdum.

1. Assume that the point A is not incident to the line p.

2. There exist a point B and a point C such that the point B is incident to the line
p, B 6= C and the point C is incident to the line p (by axiom ax I3a).

3. From the facts that the line p is incident to the plane α, and the point B is incident
to the line p, it holds that the point B is incident to the plane α (by axiom ax D11).

4. From the facts that the line p is incident to the plane β, and the point B is incident
to the line p, it holds that the point B is incident to the plane β (by axiom ax D11).

5. From the facts that B 6= C, the point B is incident to the line p, the point C is
incident to the line p, and the point A is not incident to the line p, it holds that the
points B, C and A are not collinear (by axiom ax D1a).

6. From the facts that the line p is incident to the plane α, and the point C is incident
to the line p, it holds that the point C is incident to the plane α (by axiom ax D11).

7. From the facts that the line p is incident to the plane β, and the point C is incident
to the line p, it holds that the point C is incident to the plane β (by axiom ax D11).

8. From the facts that the points B, C and A are not collinear, it holds that the
points A, B and C are not collinear (by axiom ax ncol 231).

9. From the facts that the points A, B and C are not collinear, the point A is incident
to the plane α, the point B is incident to the plane α, the point C is incident to the
plane α, the point A is incident to the plane β, the point B is incident to the plane β,
and the point C is incident to the plane β, it holds that α = β (by axiom ax I5).

10. From the facts that α = β, and α 6= β we get a contradiction.

Contradiction.

Therefore, it holds that the point A is incident to the line p.

This proves the conjecture.

Theorem proved in 10 steps and in 4.56 s.

The following theorem states that if the point A is outside the segment BC,
then the point A is outside the segment CB.

Theorem TH geo3:

Assuming that out(A,B,C), show that out(A,C,B).

Proof:

1. There exist a point G such that bet(B,A,G) and A 6= G (by axiom th 3 14).

2. From the fact that A 6= G, it holds that G 6= A (by the equality axioms).

3. It holds that A = B or A 6= B (by axiom ax g1).

4. Assume that A = B.

5. From the facts that out(A,B,C) and A = B it holds that out(A,A,C).

6. From the facts that out(A,A,C), there exist a point I such that A 6= A, C 6= A,
I 6= A, bet(A,A,I) and bet(C,A,I) (by axiom th 6 3 1).

7. From the facts that A 6= A, and A = A we get a contradiction.

This proves the conjecture.

8. Assume that A 6= B.

9. From the fact that A 6= B, it holds that B 6= A (by the equality axioms).
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Let us prove that A 6= C by reductio ad absurdum.

10. Assume that A = C.

11. From the facts that out(A,B,C) and A = C it holds that out(A,B,A).

12. From the facts that out(A,B,A), there exist a point I such that B 6= A, A 6=
A, I 6= A, bet(B,A,I) and bet(A,A,I) (by axiom th 6 3 1).

13. From the facts that A 6= A, and A = A we get a contradiction.

Contradiction.

Therefore, it holds that A 6= C.

14. From the fact that A 6= C, it holds that C 6= A (by the equality axioms).

15. From the facts that B 6= A, C 6= A, G 6= A, bet(B,A,G), and out(A,B,C), it holds
that bet(C,A,G) (by axiom th 6 2 2).

16. From the facts that C 6= A, B 6= A, G 6= A, bet(C,A,G), and bet(B,A,G), it holds
that out(A,C,B) (by axiom th 6 3 2).

This proves the conjecture.

Theorem proved in 16 steps and in 6.68 s.

The Diamond Property in rewriting theory states that if p rewrites to both q
and r, then the latter two rewrite both to some s (all in one step). The next theorem
states that if some rewrite relation satisfies the diamond property, then its reflexive
closure also satisfies the diamond property10.

Theorem TH rew:

Assuming that RE0 rewrites to or is equal to RE1, and RE0 rewrites to or is equal
to RE2, show that there exist a rewterm RE3 such that RE1 rewrites to or is equal to
RE3 and RE2 rewrites to or is equal to RE3.

Proof:

1. It holds that RE1 is equal to RE1 (by axiom ax ref e).

2. It holds that RE2 is equal to RE2 (by axiom ax ref e).

3. From the facts that RE1 is equal to RE1, it holds that RE1 rewrites to or is equal
to RE1 (by axiom ax e in re).

4. From the facts that RE2 is equal to RE2, it holds that RE2 rewrites to or is equal
to RE2 (by axiom ax e in re).

5. From the facts that RE0 rewrites to or is equal to RE1, it holds that RE0 is equal
to RE1 or RE0 rewrites to RE1 (by axiom ax e or r).

6. Assume that RE0 is equal to RE1.

7. From the facts that RE0 is equal to RE1, it holds that RE1 is equal to RE0 (by
axiom ax sym e).

8. From the facts that RE1 is equal to RE0, and RE0 rewrites to or is equal to RE2,
it holds that RE1 rewrites to or is equal to RE2 (by axiom ax congl ).

This proves the conjecture.

9. Assume that RE0 rewrites to RE1.

10 This is one of the problems listed in Bezem’s collection of problems in coherent logic
in http://www.ii.uib.no/~bezem/GL/ .
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10. From the facts that RE0 rewrites to or is equal to RE2, it holds that RE0 is equal
to RE2 or RE0 rewrites to RE2 (by axiom ax e or r).

11. Assume that RE0 is equal to RE2.

12. From the facts that RE0 is equal to RE2, it holds that RE2 is equal to RE0
(by axiom ax sym e).

13. From the facts that RE2 is equal to RE0, and RE0 rewrites to or is equal to
RE1, it holds that RE2 rewrites to or is equal to RE1 (by axiom ax congl ).

This proves the conjecture.

14. Assume that RE0 rewrites to RE2.

15. It holds that RE1 = RE2 or RE1 6= RE2 (by axiom ax g1).

16. Assume that RE1 = RE2.

17. From the facts that RE1 rewrites to or is equal to RE1 and RE1 = RE2
it holds that RE2 rewrites to or is equal to RE1.

This proves the conjecture.

18. Assume that RE1 6= RE2.

19. From the facts that RE0 rewrites to RE1, RE1 6= RE2, and RE0 rewrites
to RE2, there exist a rewterm RE3 such that RE1 rewrites to RE3 and RE2
rewrites to RE3 (by axiom ax dp r).

20. From the facts that RE1 rewrites to RE3, it holds that RE1 rewrites to
or is equal to RE3 (by axiom ax r in re).

21. From the facts that RE2 rewrites to RE3, it holds that RE2 rewrites to
or is equal to RE3 (by axiom ax r in re).

This proves the conjecture.

Theorem proved in 21 steps and in 0.32 s.

In the theory of metric spaces it holds that if SP1 is a complete metric space
and SP2 is a closed subset of SP1 then the metric space SP2 is complete. A metric
space SP2 is complete if and only if every Cauchy sequence in SP2 converges in
SP2. The following theorem is a variant of this statement, and it states that if
metric space SP1 is complete and the metric space SP2 is closed, AR0 is Cauchy
sequence in SP1 which does not converge in SP1, then the metric space SP1 is not
a subspace of metric space SP211.

Theorem TH mp:

Assuming that the metric space SP0 is complete, the metric space SP1 is closed, the
sequence SE0 is Cauchy, the sequence SE0 belongs to the metric space SP1, and the
sequence SE0 does not converge in the metric space SP1, show that the metric space
SP1 is not a subspace of the metric space SP0.

Proof:

Let us prove that the metric space SP1 is not a subspace of the metric space SP0 by
reductio ad absurdum.

1. Assume that the metric space SP1 is a subspace of the metric space SP0.

11 This is one of the examples from the paper [11].
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2. From the facts that the sequence SE0 belongs to the metric space SP1, and the
metric space SP1 is a subspace of the metric space SP0, it holds that the sequence
SE0 belongs to the metric space SP0 (by axiom ax 1).

3. From the facts that the sequence SE0 is Cauchy, the sequence SE0 belongs to the
metric space SP0, and the metric space SP0 is complete, it holds that the sequence
SE0 converges in the metric space SP0 (by axiom ax 2).

4. From the facts that the sequence SE0 converges in the metric space SP0, there
exist a element EL0 such that the value EL0 belongs to the metric space SP0 and
the sequence SE0 converges to the value EL0 (by axiom ax 3).

5. From the facts that the metric space SP1 is closed, the metric space SP1 is a
subspace of the metric space SP0, the sequence SE0 belongs to the metric space
SP1, and the sequence SE0 converges to the value EL0, it holds that the value EL0
belongs to the metric space SP1 (by axiom ax 4).

6. From the facts that the sequence SE0 converges to the value EL0, and the value
EL0 belongs to the metric space SP1, it holds that the sequence SE0 converges in
the metric space SP1 (by axiom ax 5).

7. From the facts that the sequence SE0 converges in the metric space SP1, and the
sequence SE0 does not converge in the metric space SP1 we get a contradiction.

Contradiction.

Therefore, it holds that the metric space SP1 is not a subspace of the metric space
SP0.

This proves the conjecture.

Theorem proved in 7 steps and in 0.65 s.

These sorts of proofs are more comprehensible than the proofs given in tree-
form, but in order to make them more readable, numeration of the steps should be
thrown out from the proof, and instead of the form where each is step is given in
the new line, the steps should be grouped into a paragraph, while some trivial steps
should be erased. Also, a human mathematician would rarely write “by axiom”.
The proof of TH mp, transformed by hand into this form, is given below:

Proof:

Assume that the metric space SP1 is a subspace of the metric space SP0. From
the facts that the sequence SE0 belongs to the metric space SP1, and the metric
space SP1 is a subspace of the metric space SP0, it holds that the sequence SE0
belongs to the metric space SP0. From the facts that the sequence SE0 is Cauchy,
the sequence SE0 belongs to the metric space SP0, and the metric space SP0 is
complete, it holds that the sequence SE0 converges in the metric space SP0. From
the facts that the sequence SE0 converges in the metric space SP0, there exist a
element EL0 such that the value EL0 belongs to the metric space SP0 and the
sequence SE0 converges to the value EL0. From the facts that the metric space
SP1 is closed, the metric space SP1 is a subspace of the metric space SP0, the
sequence SE0 belongs to the metric space SP1, and the sequence SE0 converges to
the value EL0, it holds that the value EL0 belongs to the metric space SP1. From
the facts that the sequence SE0 converges to the value EL0, and the value EL0
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belongs to the metric space SP1, it holds that the sequence SE0 converges in the
metric space SP1. Contradiction. Therefore, it holds that the metric space SP1 is
not a subspace of the metric space SP0.

However, this is still far from the proofs that could be found in mathematical
textbooks. The problem of generating fluent sentences in natural language from
primitive constructs is an extremely hard and challenging task, even for very sophis-
ticated NLG systems. The proofs we obtain are a simple abstractions of this.

5 RELATED WORK

Recently, the problem of proof optimization started to attract a lot of attention
across various contexts. This has been motivated by the need for extracting “clean”
proofs from proof-traces, which could benefit to many areas, such as formalization
of mathematics, education, extraction of efficient programs, etc. Approaches which
address this problem focus either on the elimination of redundant parts of proofs by
doing pruning, folding-up, proof condensation, common subexpression elimination,
etc., or on representing proofs in a more compact fashion, by doing lemma extraction
or by employing some newly proposed set of logical rules. Here, we will discuss only
those works the subject and/or methodology of which is closely related to our own.

A general technique most similar to our transformation procedure is called prun-
ing. It consists of dropping all of the redundant case distinctions and existential
eliminations sub-proofs. Pruning was initially introduced by Prawitz [21], and the
original variant is conceptually similar to our elimination of branching nodes. Also,
any derivation containing an introduction of a connective followed immediately by
its elimination can be turned into an equivalent derivation without this detour. This
reduces a proof simplification problem to a normalization problem of λ-terms. How-
ever, the underlying logics are different. CL, with its constructive proof system,
allows for an easier and more direct simplification of its proof objects.

In [7, 8], Chiarabini applied pruning to first order minimal logic. It has been
shown that a program extracted from a pruned proof can be more efficient than the
program extracted from a non-pruned one [12].

The most common way of representing object-level proofs in mathematical
textbooks is using graphical block-structured format that was firstly proposed by
Jaśkowski [18]. In Jaśkowski’s graphical method, every time an assumption is made
a new fragment of the proof is started, which is to be enclosed with a rectangle (de-
noting a subproof). Fitch popularized this method by making small modification,
like drawing only left side of the rectangle around subproofs and underlining the as-
sumption, and nowadays this method is called in the literature “the Fitch method”.
An algorithm for simplification of Fitch-style natural deduction proofs in first-order
logic was developed by Arkoudas [3]. It is used to “clean up” proofs obtained by
different ATPs based on Fitch-style natural deduction, as well as resolution provers,
by converting them to Fitch-style proofs. That system can take as an input proofs
that violate the principle of parsimony. Then certain techniques like elimination of
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redundancies, repetitions and detours are employed in order to eliminate it and, in
return, simplified proofs which obey the parsimony principle are obtained. Their
system firstly restructures the proof (it does not necessarily return a subtree of a
proof tree), and afterwards implements the contracting transformation (which elim-
inates intermediate conclusions which are not used further in the proof). In contrast
to Arkoudas’ general simplification procedure, our proof simplification procedure is
specific for CL and, since CL has constructive proof system and proof objects are
easily generated, simplification procedure is more direct and easy to implement.

Another proof method which originated from Jaśkowski’s method is Lemmon’s
method [9]. Proof format used here consists of a list of enumerated proof steps,
while for each step the ordinals of the statements used in that step and the name of
the rule applied are given. This format is similar to the format used for presenting
object-level proofs in some of the textbooks. Lemmon employed rules of conditional
proof and reductio ad absurdum, where the latter resembles steps used in our proofs.
Generally speaking, this format is very similar to the format we used for presenting
proofs in natural language form.

Koshimura and Hasegawa developed a proof simplification procedure for model
generation theorem proving [15]. It implements folding-up along with proof conden-
sation by embedding proof simplification mechanism into a model generation. That
approach is similar to ours in the way that unnecessary parts of a proof are be-
ing identified and eliminated. This is achieved by computing relevant atoms which
contribute to closing a subproof. However, our approach is different from theirs in
the following manner: first, the logic which their system uses does not involve ex-
istential quantifications, meaning that underlying logics are not the same. Second,
the definition of relevant atoms and method for elimination of irrelevant subproofs
are different – in their approach, the subproof trees are deleted only when all the
leaf-nodes of the subtree are labeled by ⊥. Still, they make use of a set of relevant
atoms not only for proof simplification after the proof has been completed, but also
during the proof search, as well as for lemma generation.

Event-B12 is a formal method for system-level modeling and analysis, and one
of the mechanisms it employs is simplification of proofs stored in xml text files, by
determining for each of its nodes if any of the data is unnecessary. The approach
consists of a depth-first postorder traversal of the proof tree and remembering, for
each branch, which predicates are needed. The framework which their tool Rodin
is built upon differs from ours (for example, proof rules have different structural
representation), and an elimination of only those nodes in the proof which are not
branching is implemented.

Most ATPs do not put emphasis on producing proofs that are easy to read and
understand. However, there are systems such as Theorema [17] which emphasize the
importance of having an aesthetically pleasing presentation of proofs. The Theorema
system is designed to provide computer support for all aspects of the mathematical
exploration cycle (including proving, solving, and computing), in the frame of one

12 http://wiki.event-b.org/index.php/Proof_Simplification
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uniform logic. An important feature of the system is a simplification of proofs
generated by Theorema. Once a proof has been found by a prover, by inspecting the
proof object, one may be able to restructure the proof in such a way that it becomes
more concise and easier to understand. The simplification of the generated proof
tree is performed in a similar manner as in our program, but differences exist in the
way proof objects are generated, which is a consequence of the different underlying
logics. Also, Ganesalingam and Gowers [11] promote benefits of having readable
proofs and for that purpose they also consider coherent logic, although they don’t
use the name “coherent logic”. They developed automatic problem solver with a
human-style output which is very hard to distinguish from solutions that a human
would write.

None of the systems listed above does a transformation of the proof into a
reductio ad absurdum form.

There are many situations in which one needs to manipulate proofs (to store
them or transfer) and where any kind of proof simplification, as well as its compact
representation, would be beneficial. A method for proof optimization in the context
of proof-carrying code, along with a method for lemma extraction that replaces
similar subproofs with instances of more general lemmas, is given by Rahul and
Necula [20]. These methods deal with proofs given in first-order logic, and they
obtain substantial reduction in the size of proofs.

Thanks to the isomorphism, proofs can be treated as programs, and optimiza-
tion of proofs is done in order to improve performance of programs. A method for
implementing transformations of formal proofs, based on the representation of de-
rived logical rules in Elf – a logic programming language, was given by Anderson
[1], and it was shown that it is relevant for the optimization of extracted programs.

6 CONCLUSIONS AND FURTHER WORK

In this paper, we have presented a method for proof simplification in the framework
of coherent logic. It is used to extract “clean” proofs from the proof-traces obtained
by ATPs (usually containing a number of redundant steps). The presented proof
simplification procedure is executed only post-festum, once a conjecture has already
been proven. We also provide a method for transformation of the proof-trace into
the reductio ad absurdum form. In this way, proofs that are formally proven cor-
rect, with no redundant or repeated steps, given in natural-language form, can be
automatically generated. This is of importance for educational purposes, as well
as for the formalization of mathematics. The approach is implemented within the
ArgoCLP prover – a coherent logic prover.

There are several possible directions for future work. Information about relevant
and irrelevant facts can be useful, not only in the context of obtaining “clean” and
shorter proofs, but also in guiding the remaining proving process (i.e., in future
search branches). In that way, a simplification would take place not just post-
festum, but on the run as well.
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One of possible extensions could also be lemma extraction, which is a technique
for retrieving fragments of a proof which can be matched. This would significantly
contribute to the optimization of proofs (like in [15]). However, it requires different
techniques from the ones used here.

We are planning to work on proof simplification for other logical frameworks. We
will also try to generalize this approach to some richer and more expressive logical
fragments. It would be interesting to draw out the general form of the rules (given in
natural deduction form) which the given proof simplification transformation can be
applied to. In addition, we will focus on applications – generation of textbook-like
proofs (in a natural-language form) which could be used to compose mathematical
textbooks which closely resemble the ones used in education.
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