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Abstract Deep connections between complex numbers and geometry had been
well known and carefully studied centuries ago. Fundamental objects that are in-
vestigated are the complex plane (usually extended by a single infinite point),
its objects (points, lines and circles), and groups of transformations that act on
them (e.g., inversions and Möbius transformations). In this paper, we treat the
geometry of complex numbers formally and present a fully mechanically verified
development within the theorem prover Isabelle/HOL. Apart from applications
in formalizing mathematics and in education, this work serves as a ground for
formally investigating various non-Euclidean geometries and their intimate con-
nections. We discuss different approaches to formalization and discuss the major
advantages of the more algebraically oriented approach.

Keywords Interactive theorem proving · Complex plane geometry · Möbius
transformations

1 Introduction

Connections between complex numbers and geometry are deep and intimate. Al-
though complex numbers have been recognized for more than 450 years, their
geometric interpretation came only at the end of 18th century in works of Wes-
sel, Argand and Gauss [26]. Their most significant applications in geometry were
developed by Cauchy, Riemann, Möbius, Beltrami, Poincaré and others during
the 19th-century [26]. Complex numbers present a very suitable apparatus for in-
vestigating properties of objects in very different geometries. Geometry has been
studied analytically since Descartes, and the Cartesian plane (R2) is often used as
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a domain for models of geometry (especially in the Euclidean case). However, re-
placing Cartesian by the complex plane gives simpler and more compact formulas
that describe geometric objects, easing the calculations and shedding some new
light on the subject. Therefore, the complex plane or some of its parts (e.g., the
unit disc or the upper half plane) are often taken as the domain in which models
of various geometries (both Euclidean and non-Euclidean ones) are formalized. It
is also an important domain for investigations in modern physics (see, for exam-
ple, Penrose and Rindler [28]). Due to its importance, the geometry of complex
numbers has been well described in the literature. There are many textbooks de-
scribing the subject in great detail (during our work we have intensively used
the textbooks written by Needham [26] and Schwerdtfeger [30]). Also, there is a
plethora of course material (handouts, notes, slides) available online. However, we
are not aware of any existing formalization of this subject. In this paper we present
our fully formal, mechanically-verified exposition of the complex plane geometry
which is, up to the best of our knowledge, first of this kind.

The need for rigorous justifications of arguments in geometry have been rec-
ognized for more than two millennia — Euclid’s ,,Elements” are one of the first
cases of mathematical deduction and form one of the most beautiful and influen-
tial works of science in the history of humankind. In the last century, the work of
Hilbert [13] and Tarski [29] enriched us with much more precise developments of
synthetic geometry. In the last several decades, with the advent of theorem provers
and interactive proof-assistants, the level of formality and rigor in geometrical rea-
soning has been raised to the highest level. Within the formal theorem proving
community, it is often advocated that, apart from the pure ,,L’art pour l’art” view
on formalizing classical mathematical results, there are many practical benefits of
this task (e.g., in mathematical education). We hope that more mathematicians
will adopt this standpoint. The level of rigor has been constantly rising throughout
the history of mathematics, and we feel that mechanical theorem proving helps
reaching the ultimate ideal of fully rigorous proofs. Formal, mechanically-checked
analysis of the content usually fills many gaps often present in classical textbooks
and makes the authors think much deeper about the subject that is investigated.
As it is often the case in formalization of mathematics, our experience in this work
shows that there are not many wrong statements in the informal textbooks. Still,
in textbooks that we have analyzed we have found some non-trivial statements
that were erroneous and could not be proved. Even more abundant are the proofs
that are imprecise, contain uncovered cases and miss some highly non-trivial jus-
tifications.

The final product of our present work is a well-developed theory of the extended
complex plane (given both as a complex projective space and as the Riemann
sphere), its objects (circles and lines), and its transformations (Möbius trans-
formations). It can serve as a very important building block for further formal
investigations of models of various geometries (e.g., our motivation for starting
this work was to formalize the properties of Poincaré’s disc model of hyperbolic
geometry). Most of the concepts that we have formalized have already been de-
scribed in the literature (although there are many details we had to invent since
they were not described in the literature that we have consulted). However, our
work required compiling many different sources into a uniform formal presentation
and translating everything into a unique language since it was originally described
in many different ways. For example, even within the same textbook, without any
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formal justification, authors freely switch between different settings (e.g., the or-
dinary and the extended complex plane), switch between geometric and algebraic
exposition, often use many unproved non-trivial facts (regarding them as mathe-
matical ,,folklore”), etc. One of our major contributions was clearing this type of
imprecisions and making all the material clear, uniform, and self-contained.

Additionally, we feel that equally (or even more) important to the final result
is our experience gained along the way, during our different attempts to reach our
final goal. Namely, there are many different ways in which the subject has been
exposed in the literature. Comparing, for example, Needham [26] and Schwerdt-
feger [30], shows two quite different ways of telling the same story — one more
geometrically and the other more algebraically inclined. Our experience shows,
that choosing the right approach was the crucial step for making the formalization
manageable within the proof assistant — it turned out that more algebraic in its
nature the approach was, it was easier to formalize, much nicer, more flexible and
more robust.

In the paper, for succinctness, we will present only the basic results of our
final formalization — the most important definitions and statements. The present
paper contains only a brief recapitulation of the original formal development and
many properties that have been formally proved are not going to be shown in the
paper. Also, no proofs will be shown nor described, as they are all available in the
original Isabelle/HOL proof documents1. In the presentation, we will mostly use
the original Isabelle/HOL notation, simplifying it a bit in some places to make it
more approachable for a wider audience.

Outline of the paper. In Subsection 1.1 we discuss some relevant related work. In
Section 2 we describe some features of the theorem prover Isabelle/HOL and de-
scribe some background theories used in our formalization. Section 3 is the central
section and contains main results of our formalization — in Subsection 3.1 we
introduce the extended complex plane, in Subsection 3.2 we introduce Möbius
transformations, in Subsection 3.3 we introduce generalized circles, in Subsection
3.4 we discuss circle orientation, and in Subsection 3.5 we discuss some important
subgroups of Möbius transformations. In Section 4 we discuss different approaches
that we have taken in our formalization, their problems and advantages. Finally,
in Section 5 we draw conclusions and discuss some potential further work.

1.1 Related Work

During the last decade, there have been many results in formalizing geometry in
proof-assistants. Parts of Hilberts seminal book ,,Foundations of Geometry” [13]
have been formalized both in Coq and Isabelle/Isar. Formalization of first two
groups of axioms in Coq, in an intuitionistic setting was done by Dehlinger et al.
[3]. First formalization in Isabelle/HOL was done by Fleuriot and Meikele [23],
and some further developments were made in master thesis of Scott [31]. Large
fragments of Tarski’s geometry [29] have been formalized in Coq by Narboux et al.
[25]. Within Coq, there are also formalizations of von Platos constructive geometry

1 Isabelle theory files and proof documents are available at http://argo.matf.bg.ac.rs/
formalizations/
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by Kahn [33,17], French high school geometry by Guilhot [8], ruler and compass
geometry by Duprat [4], projective geometry by Magaud et al. [19], etc.

In our previous work [22,21], we have already formally investigated a Carte-
sian model of Euclidean geometry. Timothy Makarios has shown independence of
Tarski’s Euclidean axiom by formalizing models of Tarski’s Euclidean and Tarski’s
non-Euclidean geometries (the Klein-Beltrami model) [20]. Within that work, the
real projective plane has been formalized in Isabelle/HOL.

As a part of the Flyspeck project, Harrison developed a very rich theory (that
includes algebra, topology and analysis) of Euclidean n-dimensional space Rn in
theorem prover HOL Light [10,12].

Some automated theorem provers in geometry have also been integrated with
proof assistants. For example, Janičić et al. describe a detailed formalization (in-
cluding implementation details) of the area method [16]. Connecting algebraic
methods (Gröbner bases and Wu’s methods) with Coq has been done by Grégoire
et al. [7] and by Géneveaux et al. [5].

Different results in complex analysis have also been shown in theorem provers.
Milewski has proved the fundamental theorem of algebra in Mizar [24], Geuvers et
al. have proved the same theorem in Coq [6], Harrison has implemented complex
quantifier elimination in HOL and used it in different formalizations, including
geometry, etc.

2 Background

In this subsection, we will introduce the theorem prover Isabelle/HOL used for
our formalization, its background logic, and notation. We will also briefly describe
some results that are part of our formalization, but more general in nature (some
lemmas about complex numbers, and the theory of linear algebra of the space C2).

2.1 Isabelle/HOL

Isabelle [27] is a generic proof assistant, but its most developed application is higher
order logic (Isabelle/HOL). Formalizations of mathematical theories are made by
defining new notions (types, constants, functions, etc.), and proving statements
about them (lemmas, theorems, etc.). This is often done using the declarative
proof language Isabelle/Isar [34]. Isar is a very rich language, and we will here
describe only the syntax of constructions used in this paper. Definitions are made
using the syntax definition x where "x = ...", where x is the constant being
defined. Lemmas are specified using the syntax lemma assumes assms shows

concl where assms are assumptions and concl is the conclusion of the lemma. If
there are no assumptions, the keyword shows can be omitted. We will also use
the syntax lemma "

∧
x1, . . . xk. Jasm1; ...; asmnK =⇒ concl" where asm1, . . . ,

asmn are the assumptions, concl is the conclusion, and x1, . . . , xk are universally
quantified variables.

Logic formulas are written in the HOL logic using the standard notation (e.g.,
the connectives ∧, ∨, −→, ¬, quantifiers ∀ and ∃). Terms can use let-bindings (e.g.,
let x = 3 in 3 ∗ x) and if-then-else expressions (e.g., if x > 0 then x else −x),
with the standard semantics.
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HOL is a typed logic. To express that x is of some type τ we write x :: τ .
The predefined type bool denotes Booleans, nat denotes natural numbers, int de-
notes integers, real denotes real numbers, while the type complex denotes complex
numbers. The imaginary unit is denoted by ii. All these types support ordinary
arithmetic operations (e.g., +, −, ∗, /). Conversion from real to complex number
will denoted by cor, the real and imaginary parts of a complex number by Re and
Im, the complex conjugate by cnj, the module of a complex number by | |, and
the argument by arg (in Isabelle/HOL it is always in the interval (−π, π]). The
complex sign function sgn computes the complex number on the unit circle that
has the same argument as the given non-zero complex number (i.e., sgn z = z/|z|).
This function is overloaded and it also applies to real numbers (that overloading
is mathematically justified as for all real x it holds that sgn (x+ ii ∗ 0) = sgn x).
The function cis applied to α computes cos α + ii∗sin α.

The type of sets containing elements of the type τ is denoted by τ set. Is-
abelle/HOL set-theoretic notation is close to that of standard mathematics, with
a few minor exceptions. Set difference is written as X − Y , and the image of a
function f over a set X is written as f ‘X. The product type is denoted by τ1× τ2.
Function type is denoted as τ1 ⇒ τ2. Functions are usually curried and function
applications are written in prefix form, common to functional programming, as f x

(instead of f(x), that is closer to standard mathematical notation). The predicate
inj denotes that the function is injective, bij that it is a bijection. The predicate
continuous on X f denotes that the given function f is continuous on the given
set X. We consider only metric spaces and once we prove that the domain and the
co-domain types of f are metric spaces for some distance functions (i.e., that they
instantiate the metric space type class2), all applications of the continuous on

predicate implicitly assume those distance functions and their induced topologies.
New types can be introduced in several ways. The simplest way is to use the

type synonym command that just introduces a new name for an existing type.
Another way is by using type definitions and then a new type is specified

to be isomorphic to some non-empty subset of an existing type. For example, a
type can be introduced as typedef three = "{0::nat, 1, 2}", generating a proof
obligation to show that the type is non-empty. Bijection between the new ab-
stract type and its representation type is given by two functions: Rep three ::

three ⇒ nat, and Abs three :: nat ⇒ three, satisfying Rep three x ∈ {0, 1, 2},
Rep three (Abs three x) = x, and y ∈ {0, 1, 2} =⇒ Abs three (Rep three y) =

y. In the rest of the paper, representation functions will be denoted by using
b c brackets, and abstraction functions by using d e brackets. The lifting/transfer
package [15] can simplify working with types introduced by typedef. In that case,
users usually need not explicitly use the representation and abstraction functions.

Another way to introduce new types, often used in mathematics, are the quo-
tient types. In Isabelle/HOL, there are several packages that facilitate working
with quotients, and our formalization uses the lifting/transfer package [15]. First
step in defining quotient type is defining an equivalence relation ≈ over some exist-
ing (representation) type τ . Quotient type κ is then defined by quotient type κ =

2 Haskell-like type classes [9] are convenient Isabelle/HOL mechanisms for organizing spec-
ifications. We say that a type instantiates a type class if there are one on more functions
defined on that type that satisfy the assumptions required by that type class. For example,
metric space type class requires a distance function (metric) satisfying the standard metric
axioms.
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τ / ≈. Functions over the quotient type are defined in two steps. First, a function
fτ :: ... τ ... is defined over the representation type τ . Then, that function is
lifted to the quotient type by using lift definition fκ :: ... κ ... is fτ . This
generates a proof obligation to show that the definition does not depend on the
choice of representative. More details can be found in the literature [18,15].

2.2 Some Background Theories

Complex numbers. Although Isabelle/HOL has some basic support for complex
numbers, it was not sufficient for our needs, so we had to make some significant
effort and extend it. We have proved many lemmas that are very technical and not
interesting for a high-level formalization description so we will not mention them in
this paper (e.g., lemma "arg i = pi/2" or lemma "|z|2 = Re (z ∗ cnj z)"). One
of the most useful definitions in this section is the definition of angle canonization

function � �, that takes into account 2π periodicity of sine and cosine and maps
any angle to its canonical value that lies within the interval (−π, π]. With this
function, for example, multiplicative properties of the arg function can be easily
expressed and proved.

lemma "z1 ∗ z2 6= 0 =⇒ arg(z1 ∗ z2) = �arg z1 + arg z2�"

Since complex numbers are often treated as vectors, introducing the scalar product

between two complex numbers (it has been defined as 〈z1, z2〉 = (z1 ∗ cnj z2 + z2 ∗
cnj z1)/2) showed out to be useful to succinctly express some conditions.

Linear algebra. Next important theory for further formalization is the theory of
linear algebra of C2. Representing vectors and matrices of arbitrary dimensions
pose a challenge in HOL, because of lack of dependent types [10]. There are some
available formalizations of n-dimensional matrices and vectors (e.g., the one in-
cluded in the Isabelle/HOL library or the one available on Archive of Formal
Proofs [32]), but none of these includes the notions that we need (e.g., eigenval-
ues, congruence, diagonalization). In our current formalization and its foreseen
extensions we only need to consider finite dimension spaces C2 and in some sit-
uations R3. Therefore, we have only formalized some linear algebraic properties
of these small dimensional spaces. Complex vectors (C2 vec) are defined as pairs of
complex numbers. Similarly, complex matrices (C2 mat) are defined as 4-tuples of

complex numbers (matrix

(
A B

C D

)
is represented by (A,B,C,D)). Matrix addition

is denoted by +, subtraction by −, scalar multiplication of vectors is denoted by ∗sv,
and matrices by ∗sm. Both vectors and matrices form vector spaces under these
operations. Scalar product of two vectors is denoted by ∗vv, the product of vector

and matrix by ∗vm, the product of matrix and a vector by ∗mv, and the product of

two matrices by ∗mm. Both zero vector and zero matrix are denoted by 0, identity

matrix is denoted by by eye, the determinant of a matrix is denoted by mat det, its
trace (the sum of diagonal elements) by mat trace, the inverse matrix by mat inv,
transpose by mat transpose, conjugation of every vector element by vec cnj, con-

jugation of every matrix element by mat cnj, etc. Regular matrices form a group
under multiplication. Many standard notions of linear algebra have been intro-
duced. For example, eigenvalues and eigenvectors are defined and characterized in
the following way.
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definition eigenval :: "complex ⇒ C2 mat ⇒ bool" where

"eigenval k A ←→ (∃v. v 6= 0 ∧ A ∗mv v = k ∗sv v)"
lemma "eigenval k A ←→ k2 − mat trace A ∗ k + mat det A = 0"

The adjoint of a matrix is its conjugate transpose. Hermitian matrices are the
ones equal to their adjoint, while unitary matrices are the ones whose inverse is
equal to their adjoint.

definition mat adj where "mat adj H = mat cnj (mat transpose H)"

definition hermitian where "hermitian H ←→ mat adj H = H"

definition unitary where "unitary M ←→ mat adj M ∗mm M = eye"

Other background notions needed in this paper are going to be introduced
along the way, and we refer the reader to our original proof documents for more
details.

3 Main Results

3.1 Extended Complex Plane

A very important step in developing the geometry of the complex plane is extend-
ing the plane C with an additional element (treated as the infinite point). The
extended plane will be denoted by C. There are several different approaches [26,
30] to define C. The most appealing approach computationally is the based on
homogeneous coordinates, and the most appealing approach visually is based on
the stereographic projection of the Riemann sphere.

3.1.1 CP 1 — Homogeneous Coordinates

The extended complex plane C is identified with a complex projective line (the one-
dimensional projective space over the complex field, sometimes denoted by CP 1).
Each point of C is represented by a pair of complex homogeneous coordinates (not
both equal to zero). Two pairs of homogeneous coordinates represent the same
point in C iff they are proportional by a non-zero complex factor. Isabelle/HOL
formalization of this concept relies on the lifting/transfer package for quotients
[15] and is done in three stages3.

First, the type of non-zero pairs of complex numbers (also treated as non-zero
complex vectors) is introduced.

typedef C2 vec6=0 = "{v::C2 vec. v 6= 0}"

This gives the representation function Rep C2 vec6=0 (that we will denote by b cC2)
returning a (non-zero) pair of complex numbers for each given element of the
auxiliary type C2 vec6=0 and the abstraction function Abs C2 vec6=0 (that we will
denote by d eC2) returning an element of C2 vec6=0 for each given non-zero pair of
complex numbers.

Second, two elements of the type C2 vec6=0 are said to be equivalent iff their
representations are proportional.

3 One stage could be avoided by using partial quotients offered by the lifting/transfer pack-
age. This feature has not been used in our formalization due to some problems in the early
versions of the quotient package. All problems have been fixed in the meantime, but our for-
malization was quite developed, and it would be quite tedious to change it.
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definition ≈C2 :: "C2 vec6=0 ⇒ C2 vec6=0 ⇒ bool" where

"z1 ≈C2 z2 ←→ (∃ (k::complex). k 6= 0 ∧ bz2cC2 = k ∗sv bz1cC2)"

It is quite easy to show that ≈C2 is an equivalence relation.
Finally, the type of extended complex numbers given by homogeneous coordi-

nates are defined as equivalence classes of ≈C2 and are introduced as the following
quotient type.

quotient type complexhc = C2 vec6=0 / ≈C2

To summarize, on the lowest representation level there is the type of pairs of
complex numbers, on the next level there is the type of non-zero complex 2 × 2
vectors (represented by the previous type) and on the highest level there is the
quotient type inhabited by equivalence classes — dealing with this quotient type
(its representation and abstraction) is done behind the scenes, by the lifting and
transfer package [15]. These three layers of abstraction can be confusing for an
ordinary mathematician who is used to identify them, but they are necessary in a
formal setting where each object must have a unique type (for example, it is usual
to consider that (1, i) is both a pair of complex numbers, and a non-zero complex
vector, but in our formalization (1, i) is a pair of complex numbers, while d(1, i)eC2

is a non-zero complex vector). In the paper we will always use a non-aggressive
notation (b c and d e) for representation and abstraction functions. Just ignoring
these brackets can make the text more approachable and more like the ordinary
mathematical texts.

Ordinary and infinite numbers. Each ordinary complex number can be converted
to an extended complex number.

definition of complex rep :: "complex ⇒ C2 vec6=0" where

of complex rep z = d(z, 1)eC2

lift definition of complex :: "complex ⇒ complexhc" is of complex rep

The single point at infinity is defined the following way

definition inf hc rep :: C2 vec6=0 where inf hc rep = d(1, 0)eC2

lift definition ∞hc :: "complexhc" is inf hc rep

It is easily shown that all extended complex numbers are either ∞hc (iff their
second homogeneous coordinate is zero) or can be obtained by converting from an
ordinary complex number (iff their second homogeneous coordinate is not zero).

lemma "z = ∞hc ∨ (∃ x. z = of complex x)"

Notation 0hc, 1hc and ihc is used to denote extended complex counterparts of
0, 1, and i.

Arithmetic operations. Arithmetic operations on ordinary complex numbers can be
extended to the extended complex plane.

On the lowest, representation level, the addition of (z1, z2) and (w1, w2) is
defined as (z1 ∗ w2 + w1 ∗ z2, z2 ∗ w2), i.e.,

definition plus hc rep :: "C2 vec6=0 ⇒ C2 vec6=0 ⇒ C2 vec6=0"

where "plus hc rep z w = (let (z1, z2) = bzcC2; (w1, w2) = bwcC2

in d(z1 ∗ w2 + w1 ∗ z2, z2 ∗ w2)eC2)"
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This gives a non-zero pair of homogeneous coordinates unless both z2 and w2

are zero (corresponding to the sum of two infinite values), otherwise, it gives an
ill-defined element d(0, 0)eC2.4 The definition is lifted to the quotient type.

lift definition +hc :: "complexhc ⇒ complexhc ⇒ complexhc" is plus hc rep

This generates the proof obligation Jz ≈C2 z
′;w ≈C2 w

′K =⇒ z+hcw ≈C2 z
′+hcw

′,
that is easily proved by case analysis on whether both z2 and w2 are zero. Note
that, due to the requirement of HOL that all functions are total, we could not
define the function only for the well-defined cases, and in the lifting proofs we also
had to deal with the ill-defined cases.

Next, it is shown that this operation extends the ordinary addition of complex
numbers (the operation + on C).

lemma "of complex z +hc of complex w = of complex (z + w)"

The sum of an ordinary complex number and ∞hc is ∞hc (however, ∞hc +hc∞hc

is ill-defined).

lemma "of complex z +hc ∞hc = ∞hc"

lemma "∞hc +hc of complex z = ∞hc"

The operation +hc is associative and commutative, but ∞hc does not have an
inverse, so +hc on C does not have the nice algebraic properties of + on C.

Other arithmetic operations are also extended to C. On the lowest, represen-
tation type, the unary minus of (z1, z2) is (−z1, z2), the multiple of (z1, z2) and
(w1, w2) is (z1 ∗ z2, w1 ∗ w2), and the reciprocal of (z1, z2) is (z2, z1) – these opera-
tions are then lifted to the abstract quotient type yielding the operations denoted
by uminushc, ∗hc, and reciphc. Subtraction (denoted by −hc) is defined by using
+hc and uminushc, and division (denoted by :hc) by using ∗hc and reciphc. As
in the case of addition, it is shown that all these operations match the ordinary
operations on the finite part of the extended complex plane (e.g. lemma uminushc
(of complex z) = of complex (−z)). Next lemmas show the behavior of these op-
eration when the infinite point is involved (note that the expressions 0hc ∗hc∞hc,
∞hc ∗hc 0hc, 0hc :hc 0hc, and ∞hc :hc ∞hc are ill-defined).

lemma "uminushc ∞hc = ∞hc"

lemma "reciphc ∞hc = 0hc" "reciphc 0hc = ∞hc"

lemma "z 6= 0hc =⇒ z ∗hc ∞hc = ∞hc ∧ ∞hc ∗hc z = ∞hc"

lemma "z 6= 0hc =⇒ z :hc ∞hc = 0hc"
lemma "z 6=∞hc =⇒ ∞hc :hc z = ∞hc"

Complex conjugation is also extended to C (on the representation type (z1, z2)
is mapped to (z1, z2)), giving the operation cnjhc. A very important operation in
complex geometry is the inversion over the unit circle:

4 All the functions (including the abstraction function d eC2) in HOL are total. However,
all the provided lemmas about that function include the precondition that its argument is
not (0, 0). Therefore, there is no way to reason about the value d(0, 0)eC2 and it should be

considered to be ill-defined. The sum ∞hc +hc ∞hc cannot be defined so that C becomes a
group under addition — the law −a + a = 0 requires that ∞hc +hc ∞hc = 0hc (since the
opposite element of ∞hc must be ∞hc), but that would break the associativity since then it
holds that (∞hc +hc∞hc) +hc 1hc = 1hc 6= 0hc =∞hc +hc (∞hc +hc 1hc).
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definition inversionhc :: "complexhc ⇒ complexhc" where

"inversionhc = cnjhc ◦ reciphc"

The most basic properties of inversion are then easily proved.

lemma "inversionhc ◦ inversionhc = id"

lemma "inversionhc 0hc = ∞hc" "inversionhc ∞hc = 0hc"

Ratio and cross ratio. The (simple) ratio and the cross-ratio are very important
concepts in projective geometry and the extended complex plane (cross-ratio is a
characterizing invariant of Möbius transformations – the fundamental transforma-
tions of C, and it is possible to define lines using ratio and circles using cross-ratio
of points).

Ratio of points z, v and w is usually defined as z−v
z−w . Our definition introduces

it in homogeneous coordinates.

definition ratio rep where "ratio rep z v w =

(let (z1, z2) = bzcC2; (v1, v2) = bvcC2; (w1, w2) = bwcC2

in d((z1 ∗ v2 − v1 ∗ z2) ∗ w2, (z1 ∗ w2 − w1 ∗ z2) ∗ v2)eC2)"

lift definition ratio :: "complexhc ⇒ complexhc ⇒ complexhc ⇒ complexhc"

is ratio rep

Note that this is well-defined in all cases except when z = w = v or z = v =∞hc or
z = w =∞hc or v = w =∞hc (however, in the lifting proofs these ill-defined cases
must also be covered). The original ratio of differences is defined in all cases except
when z = w = v or z = ∞hc or v = w = ∞hc, so our definition in homogeneous
coordinates naturally extends the original definition. Following lemmas show the
behavior of the ratio in all well-defined cases (it matches the original ratio of
differences whenever it is defined).

lemma "Jz 6= v ∨ z 6= w; z 6=∞hc; v 6=∞hc ∨ w 6=∞hcK =⇒
ratio z v w = (z −hc v) :hc (z −hc w)"

lemma Jv 6=∞hc; w 6=∞hcK =⇒ ratio ∞hc v w = 1hc
lemma Jz 6=∞hc; w 6=∞hcK =⇒ ratio z ∞hc w = ∞hc

lemma Jz 6=∞hc; v 6=∞hcK =⇒ ratio z v ∞hc = 0hc

The last two lemmas are consequences of the first one. Also, note that the ratio
cannot be defined for the case when at least two points are infinite in a natural
way (so that the ratio function remains continuous in all of its parameters).

The cross-ratio is defined over 4 points (z, u, v, w), usually as (z−u)(v−w)
(z−w)(v−u) . Again,

we define it using homogeneous coordinates.

definition cross ratio rep where "cross ratio rep z u v w =

(let (z1, z2) = bzcC2; (u1, u2) = bucC2;

(v1, v2) = bvcC2; (w1, w2) = bwcC2 in

d(z1 ∗ u2 − u1 ∗ z2) ∗ (v1 ∗ w2 − w1 ∗ v2), (z1 ∗ w2 − w1 ∗ z2) ∗ (v1 ∗ u2 − u1 ∗ v2))eC2"

lift definition cross ratio :: "complexhc ⇒ complexhc ⇒
complexhc ⇒ complexhc ⇒ complexhc" is cross ratio rep

This is well-defined in all cases except when z = u = w or z = v = w or
z = u = v or u = v = w (note that infinite values for z, u, v or w are allowed,
which is not the case in the original fractional formulation). Some basic properties
of the cross-ratio are given by the following lemmas.
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lemma "J(z 6= u ∧ v 6= w) ∨ (z 6= w ∧ u 6= v);z 6=∞hc;u 6=∞hc;v 6=∞hc;w 6=∞hcK
=⇒ cross ratio z u v w = ((z −hc u) ∗hc (v−hc) :hc ((z −hc w) ∗hc (v −hc u))"

lemma "cross ratio z 0hc 1hc ∞hc = z"

lemma "J z1 6= z2;z1 6= z3 K =⇒ cross ratio z1 z1 z2 z3 = 0hc"
lemma "J z2 6= z1;z2 6= z3 K =⇒ cross ratio z2 z1 z2 z3 = 1hc"
lemma "J z3 6= z1;z3 6= z2 K =⇒ cross ratio z3 z1 z2 z3 = ∞hc"

3.1.2 Riemann Sphere and Stereographic Projection

The extended complex plane can be identified with a Riemann (unit) sphere Σ by
means of stereographic projection [26,30]. The sphere is projected from its north
pole N to the xOy plane (identified with C). This projection establishes a bijective
map sp between Σ\N and the finite complex plane C. The infinite point is defined
as the image of N .

In Isabelle/HOL, the sphere Σ is defined as a new type.

typedef riemann sphere = "{(x, y, z)::R3 vec. x2 + y2 + z2 = 1}"

Again, this defines functions Rep riemann sphere (that will be denoted by b cR3

and Abs riemann sphere (that will be denoted by d eR3) that connect the points
of the abstract type (riemann sphere) and the representation type (triples of real
numbers). Stereographic projection is introduced in the following way:

definition stereographic rep :: "riemann sphere ⇒ C2 vec6=0" where

"stereographic rep M =

(let (x, y, z) = bMcR3

in if (x, y, z) 6= (0, 0, 1) then d(x+ i ∗ y, 1− z)eC2 else d(1, 0)eC2)"

lift definition stereographic :: "riemann sphere ⇒ complexhc" is

stereographic rep

For all points, this is well-defined (the vector (x + i ∗ y, 1 − z) is non-zero as
(x, y, z) 6= (0, 0, 1), and (1, 0) is clearly non-zero).

Inverse stereographic projection is defined in the following way.

definition inv stereographic rep :: "C2 vec6=0 ⇒ riemann sphere" where

"inv stereographic rep z =

(let (z1, z2) = bzcC2

in if z2 = 0 then d(0, 0, 1)eR3

else let z = z1/z2; XY = 2 ∗ z / cor (1 + |z|2); Z = (|z|2 − 1)/(1 + |z|2)
in d(Re XY, Im XY, Z)eR3)"

lift definition inv stereographic :: "complexhc ⇒ riemann sphere" is

inv stereographic rep

For all points this is well-defined (the sum of squares of three coordinates is 1 in
both cases so the Abs riemann sphere function can safely be applied).

The connection between the two functions is given by the following lemmas.

lemma "stereographic ◦ inv stereographic = id"

lemma "inv stereographic ◦ stereographic = id"

lemma "bij stereographic" "bij inv stereographic"

The proofs are not difficult but require formalizing some tedious calculations.
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Chordal distance. Riemann sphere can be made a metric space. One of the most
common ways to introduce metric is chordal metric – distance between two points
on the sphere is the length of the chord that joins them.

definition distrs :: "riemann sphere ⇒ riemann sphere ⇒ real" where

"distrs M1 M2 = (let (x1, y1, z1) = bM1cR3; (x2, y2, z2) = bM2cR3

in norm (x1 − x2, y1 − y2, z1 − z2))"

The function norm is a Isabelle/HOL library function and in this case it com-
putes the Euclidean vector norm in R3. Using the (already available) fact that
R3 is a metric space (under the distance function λ x y. norm(x − y)), it was not
difficult to show that the type riemann sphere equipped with distrs is a metric
space, i.e., an instantiation of the metric space type class.

Although it is defined on the sphere, the chordal metric has its representation
in the plane.

lemma assumes

"stereographic M1 = of complex m1" "stereographic M2 = of complex m2"

shows "distrs M1 M2 = 2 ∗ |m1 −m2| / ( sqrt (1 + |m1|2) ∗ sqrt (1 + |m2|2) )"
lemma assumes "stereographic M1 = ∞hs" "stereographic M2 = of complex m"

shows "distrs M1 M2 = 2 / sqrt (1 + |m|2)"
lemma assumes "stereographic M1 = of complex m" "stereographic M2 = ∞hs"

shows "distrs M1 M2 = 2 / sqrt (1 + |m|2)"
lemma assumes "stereographic M1 = ∞hs" "stereographic M2 = ∞hs"

shows "distrs M1 M2 = 0"

These lemmas make a distinction between finite and infinite points, but this
case analysis can be avoided if homogeneous coordinates are used.

definition "〈〈z, w〉〉 = (vec cnj bzcC2) ∗vv (bwcC2)"

definition "〈〈z〉〉 = sqrt (Re 〈〈z, z〉〉)"
definition "dist hc rep = 2 ∗ sqrt (1− |〈〈z, w〉〉|2/(〈〈z〉〉2 ∗ 〈〈w〉〉2))"
lift definition disthc :: "complexhc ⇒ complexhc ⇒ real is dist hc rep

lemma "distrs M1 M2 = disthc (stereographic M1) (stereographic M2)"

This form is sometimes called Fubini-Study metric.
The type complexhc equipped with the disthc metric is also an instantiation

of the metric space type class. This trivially follows from the last lemma that
connects it to the metric space on the Riemann sphere. There are also direct proofs
of this (e.g., Hille [14] gives a direct proof due to Shizuo Kakutani, however the
proof is incomplete as the possibility of one point being infinite is not considered)
and we have formalized them5. It turned out that some properties (e.g., the triangle
inequality) are easier to prove on the Riemann sphere using the function distrs,
but some properties (e.g., that the metric space is perfect, i.e., that it does not
have isolated points) are easier to prove in the projection using the function disthc,
indicating the significance of having different models of the same concept.

Using the chordal metric in the extended plane, and the Euclidean metric
on the sphere in R3, the stereographic and inverse stereographic projections are
proved to be continuous.

5 Our formalization started without considering the Riemann sphere and so we could only
use a direct proof in the beginning, but at one point we introduced the Riemann sphere and
using it explicitly simplified many proofs, including this one.
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lemma "continuous on UNIV stereographic"

"continuous on UNIV inv stereographic"

Note that in the previous lemma, metrics are implicit (as described in Section
2).

3.2 Möbius Transformations

Möbius transformations (also called homographic, linear fractional, or bilinear trans-
formations) are the fundamental transformations of the extended complex plane.
In our formalization they are introduced algebraically. Each transformation is rep-
resented by a regular (non-singular, non-degenerate) 2×2 matrix that acts linearly
on homogeneous coordinates. As proportional homogeneous coordinates represent
same points of C, proportional matrices will represent the same Möbius transfor-
mation. Again, the formalization proceeds in three steps using the lifting/transfer
package. First, the type of regular matrices is introduced.

typedef C2 mat reg = "{M :: C2 mat. mat det M 6= 0}"

The representation function Rep C2 mat reg will be denoted by b cM and the ab-
straction function Abs C2 mat reg will be denoted by d eM . Regular matrices form
a group under multiplication that is usually called general linear group and denoted
by GL(2,C). In some cases its subgroup, special linear group, denoted by SL(2,C),
and containing only the matrices with the determinant 1 is considered.

Möbius group. Two regular matrices are considered to be equivalent iff their rep-
resentations are proportional.

definition ≈M :: "C2 mat reg ⇒ C2 mat reg ⇒ bool" where

"M1 ≈M M2 ←→ (∃ (k::complex). k 6= 0 ∧ bM2cM = k ∗sm bM1cM)"

It is easy to show that this is an equivalence relation. Möbius elements are intro-
duced as equivalence classes over this relation.

quotient type mobius = C2 mat reg / ≈M

We will sometimes use the auxiliary constructor mk mobius that returns a Möbius
element (an equivalence class) for the given 4 complex parameters (it makes sense
only when the corresponding matrix is regular).

Möbius elements form a group under operations that will now define. This
group is called the projective general linear group and denoted by PGL(2,C). Again,
SGL(2,C) containing elements with the determinant 1 can be considered. Compo-

sition of Möbius elements is obtained by multiplying their representing matrices.

definition mobius comp rep :: "C2 mat reg ⇒ C2 mat reg ⇒ C2 mat reg"

where "moebius comp rep M1 M2 = dbM1cM ∗mm bM2cMeM"

lift definition mobius comp :: "mobius ⇒ mobius ⇒ mobius" is

mobius comp rep

Similarly, the inverse Möbius element is obtained by taking the inverse representa-
tive matrix.
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definition mobius inv rep :: "C2 mat reg ⇒ C2 mat reg" where

"mobius inv rep M = dmat inv bMcMeM"

lift definition mobius inv :: "mobius ⇒ mobius" is "mobius inv rep"

Finally, identity Möbius element is represented by the identity matrix.

definition mobius id rep :: "C2 mat reg" where "mobius id rep = deyeeM"

lift definition mobius id :: "mobius" is mobius id rep

All these definitions always introduce well-defined objects (as the product of
regular matrices is regular and the inverse of a regular matrix is regular). Proof
obligations necessary to lift the definitions (e.g., M1 ≈M M2 =⇒ mobius inv rep

M1 ≈M mobius inv rep M2) are easily discharged. Composition, inverse and iden-
tity establish the group structure on the set of Möbius elements. This is shown
by showing that the type mobius along with these operations is an instantiation
of the group add type class built-in Isabelle/HOL. Therefore, we will sometimes
denote mobius comp by +, mobius inv by unary −, and mobius id by 0, make sums
of Möbius elements f + g, differences of elements f − g, and so on.

Möbius group action. Action of every Möbius group element on the points of the
extended complex plane C induces a mapping from C to C that is a Möbius trans-

formation. The action is given by the function mobius pt.

definition mobius pt rep :: "C2 mat reg ⇒ C2 vec6=0 ⇒ C2 vec6=0"

where "moebius pt rep M z = dbMcM ∗mv bzcC2eC2"

lift definition mobius pt :: "mobius ⇒ complexhc ⇒ complexhc" is

mobius pt rep

Since the product of a regular matrix and a non-zero vector is a non-zero vector, the
result is always well-defined. Lifting the definition generates the obligation JM ≈M
M ′; z ≈C2 z′K =⇒ mobius pt rep M z ≈C2 mobius pt rep M ′ z′, that is quite
easily discharged.

Group operations on Möbius elements correspond to operations on their in-
duced Möbius transformations (composition of mappings, inverse mapping and
the identity mapping).

lemma "mobius pt (mobius comp M1 M2) = (mobius pt M1) ◦ (mobius pt M2)"

lemma "mobius pt (mobius inv M) = inv (mobius pt M)"

lemma "mobius pt (mobius id) = id"

The action is transitive (as it is always a bijective map).

lemma "bij (mobius pt M)"

In the classic literature Möbius transformations are often expressed in the form
az+b
cz+d , and the following lemma justifies this (but with a special case for the infinite
argument z).

lemma assumes "mat det (a, b, c, d) 6= 0"
shows "moebius pt (mk mobius a b c d) z =

(if z 6= ∞hc then

((of complex a) ∗hc z +hc (of complex b)) :hc
((of complex c) ∗hc z +hc (of complex d))

else (of complex a) :hc (of complex c))"
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An arbitrary transformation of C is a Möbius transformation iff it is an action
of some Möbius group element.

definition is mobius :: "(complexhc ⇒ complexhc) ⇒ bool" where

"is mobius f ←→ (∃ M. f = mobius pt M)"

Note that most results listed so far depend on the fact that the representation
matrix of the Möbius transformation is regular — otherwise, the action would be
degenerate and crush the whole plane C into a single point.

Some special Möbius transformations. Many transformations encountered in geom-
etry are special kinds of Möbius transformations. Very important subgroup is the
group of Euclidean similarities (also called integral transformations). They are deter-
mined by using two complex parameters (and represent Möbius transformations
when the first one is not zero).

definition similarity :: "complex ⇒ complex ⇒ mobius" where

"similarity a b = mk mobius a b 0 1"

Similarities form a group (that is sometimes called the parabolic group).

lemma "Ja 6= 0; c 6= 0K =⇒ mobius comp (similarity a b) (similarity c d) =

similarity (a ∗ c) (a ∗ d+ b)"
lemma "a 6= 0 =⇒ mobius inv (similarity a b) = similarity (1/a) (−b/a)"
lemma "id mobius = similarity 1 0"

Their action is a linear transformation of C, and each non-constant linear
transformation of C is the action of an element of the similarity group.

lemma "a 6= 0 =⇒ mobius pt (similarity a b) =

(λ z. (of complex a) ∗hc z +hc (of complex b))"

Euclidean similarities are the only Möbius group elements such that their action
leaves the ∞hc fixed.

lemma "mobius pt M ∞hc = ∞hc ←→ (∃ a b. a 6= 0 ∧ M = similarity a b)"

If both∞hc and 0hc are fixed, then its a similarity with coefficients a and b = 0,
and the action is of the form λ z. (of complex a) ∗hc z.

lemma "mobius pt M ∞hc = ∞hc ∧ mobius pt M 0hc = 0hc ←→
(∃ a. a 6= 0 ∧ M = similarity a 0)"

Euclidean similarities include translations, rotations, and dilatations, and every
Euclidean similarity can be decomposed using these.

definition "translation v = similarity 1 v"

definition "rotation φ = similarity (cis φ) 0"
definition "dilatation k = similarity (cor k) 0"
lemma "a 6= 0 =⇒ similarity a b =

(translation b) + (rotation (arg a)) + (dilatation |a|)"

Reciprocal (1hc :hc z) is also a Möbius transformation.

definition "reciprocation = mk mobius (1, 0, 0, 1)"
lemma "reciphc = mobius pt reciprocation"
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On the other hand, inversion is not a Möbius transformation (it is a canonical
example of so-called anti-Möbius transformations, or antihomographies).

A very important fact is that every Möbius transformation can be composed
of Euclidean similarities and a reciprocation. One possible way to achieve this
is given by the following lemma (the case when c = 0 is the case of Euclidean
similarities, and it has already been analyzed).

lemma assumes "c 6= 0" and "a ∗ d− b ∗ c 6= 0"
shows "mk mobius a b c d =

translation (a/c) + rotation dilatation ((b ∗ c− a ∗ d)/(c ∗ c)) +

reciprocal + translation (d/c)"

Decomposition is used in many proofs. Namely, to show that every Möbius trans-
formation has some property, it suffices to show that reciprocation and all Eu-
clidean similarities have that property, and that the property is preserved under
compositions (usually, most of the effort goes to proving the reciprocation case,
while the rest is much simpler).

lemma assumes "
∧

v. P (translation v)" "
∧

α. P (rotation α)"
"
∧

k. P (dilatation k)" "P (reciprocation)"
"
∧

M1 M2. J P M1; P M2 K =⇒ P (M1 +M2)"
shows "P M"

Cross-ratio as a Möbius transformation For any fixed three points z1, z2 and z3,
cross ratio z z1 z2 z3 can be seen as a function of a single variable z. The fol-
lowing lemma guarantees that this function is a Möbius transformation, and by
the properties of the cross-ratio it maps z1 to 0hc, z2 to 1hc and z3 to ∞hc.

lemma "J z1 6= z2; z1 6= z3; z2 6= z3 K =⇒
is mobius (λ z. cross ratio z z1 z2 z3)"

Then, the cross-ratio can be used to show that there is a Möbius transformation
mapping any three different points to 0hc, 1hc and∞hc, respectively. Since Mob̈ius
transformations form a group, a simple consequence of this is that there is a Möbius
transformation mapping any three different points to any three different points.

lemma "J z1 6= z2; z1 6= z3; z2 6= z3 K =⇒ (∃ M. mobius pt M z1 = 0hc ∧
mobius pt M z2 = 1hc ∧ mobius pt M z3 = ∞hc)"

The next lemma turns out to have very important applications in further proof
development, as it enables so-called ,,without-loss-of-generality (wlog)” reasoning
[11]. Namely, if the property is preserved under Möbius transformations, then
instead of showing that the property holds for any three different points one can
only show that the property holds for points 0hc, 1hc, and ∞hc.

lemma assumes "P 0hc 1hc ∞hc" "z1 6= z2" "z1 6= z3" "z2 6= z3"

"
∧

M u v w. P u v w =⇒
P (mobius pt M u) (mobius pt M v) (mobius pt M w)"

shows "P z1 z2 z3"
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One of the first applications of ,,wlog” reasoning for Möbius is in analyzing
fixed points of Möbius transformations. It is easy to show that only the identity
transformation has the fixed points 0hc, 1hc, and∞hc. It also holds that if a Möbius
transformation M has three different fixed points, it is the identity transformation.
The direct proof of this relies on the fact that a 2 × 2 matrix has at most two
independent eigenvectors, and that can be easily avoided using ,,wlog” reasoning
(as any three different points can be mapped to 0hc, 1hc, and ∞hc by some M ′

and then M ′ +M −M ′ has these three points fixed so it must be 0).

lemma "J mobius pt M 0hs = 0hs; mobius pt M 1hs = 1hs;
mobius pt M ∞hs = ∞hs K =⇒ M = id mobius"

lemma "J mobius pt M z1 = z1; mobius pt M z2 = z2;

mobius pt M z3 = z3; z1 6= z2; z1 6= z3; z2 6= z3 K =⇒ M = id mobius"

A consequence of this is that there is a unique Möbius transformation mapping
three different points to other three different points (it has already been shown
that there exists such transformation and if there were two, then their difference
would have three different fixed points so it would be identity).

lemma "Jz1 6= z2; z1 6= z3; z2 6= z3; w1 6= w2; w1 6= w3; w2 6= w3K =⇒ ∃! M.

mobius pt M z1 = w1 ∧ mobius pt M z2 = w2 ∧ mobius pt M z3 = w3"

Möbius transformations preserve cross-ratio. Again, a direct proof would be
complicated, so an elegant indirect proof has been formalized (basically, the dif-
ference of λz. cross ratio z z1 z2 z3 and M maps (M z1) to 0hc, (M z2) to 1hc,
and (M z3) to ∞hc, therefore it must be equal to λz. cross ratio z (M z1) (M

z2) (M z3), and the statement follows by substituting (M z) for z).

lemma "Jz1 6= z2; z1 6= z3; z2 6= z3K =⇒
cross ratio z z1 z2 z3 = cross ratio (mobius pt M z) (mobius pt M z1)

(mobius pt M z2) (mobius pt M z3)"

3.3 Circlines

A very important property of the extended complex plane is that it is possible
to treat circles and lines in a uniform way. The basic object is generalized circle,
or circline for short. In our formalization, we follow the approach described by
Schwerdtfeger [30] and represent circlines by Hermitian, non-zero 2 × 2 matrices.

In the original formulation, a matrix

(
A B

C D

)
corresponds to the equation A ∗ z ∗

cnj z + B ∗ cnj z + C ∗ z +D = 0, where C = cnjB and A and D are real (as the
matrix is Hermitian). The key insight is that this equation represents a line when
A = 0 or a circle, otherwise.

Again, our formalization proceeds in three stages. First, the type of Hermitian,
non-zero matrices is introduced.

definition is C2 mat herm :: "C2 mat ⇒ bool" where

"is C2 mat herm H ←→ hermitian H ∧ H 6= 0"
typedef C2 mat herm = "{H :: C2 mat. is C2 mat herm H}"
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The representation function Rep C2 mat herm will be denoted by b cH , and the
abstraction function Abs C2 mat herm will be denoted by d eH . Considering the
interpretation in the form of an equation, it is clear that proportional matrices
should be considered equivalent. This time matrices are proportional by a real
non-zero factor.

definition ≈cm :: "C2 mat herm ⇒ C2 mat herm ⇒ bool" where

"H1 ≈cm H2 ←→ (∃ (k::real). k 6= 0 ∧ bH2cH = cor k *sm bH1cH)"

It is easily shown that this is an equivalence relation, and circlines are defined
by a quotient construction as its equivalence classes.

quotient type circline = C2 mat herm / ≈cm

An auxiliary constructor mk circline returns a circline (an equivalence class)
for given four complex numbers A, B, C and D (provided that they form a Her-
mitian, non-zero matrix).

Each circline determines a corresponding set of points. Again, a description
given in homogeneous coordinates is a bit better than the original description
defined only for ordinary complex numbers. The point with homogeneous coordi-
nates (z1, z2) will belong to the set of circline points iff A ∗ z1 ∗ cnj z1 +B ∗ cnj z1 ∗
z2 +C ∗z1 ∗cnj z2 +D∗z2 ∗cnj z2 = 0. Since this is a quadratic form determined by
a vector of homogeneous coordinates and the Hermitian matrix, the set of points
on a given circline is formalized as follows (we also here print the definitions of
bilinear and quadratic forms, that are introduced in our background theory of
linear algebra).

definition "bilinear form H z1 z2 = (vec cnj z1) ∗vm H ∗vv z2"

definition "quad form H z = bilinear form H z z"

definition on circline rep :: "C2 mat herm ⇒ C2 vec6=0 ⇒ bool" where

"on circline rep H z ←→ quad form bHcH bzcC2 = 0"

lift definition on circline :: "circline ⇒ complexhc ⇒ bool" is

on circline rep

definition circline set :: "complexhc set" where

"circline set H = {z. on circline H z}"

Lifting the definition of on circline generates the proof obligation JH1 ≈cm H2;
z1 ≈C2 z2K =⇒ on circline rep H1 z1 ←→ on circline rep H2 z2 that is easily
discharged.

Some special circlines. Among all circlines most prominent ones are the unit circle,
the x-axis, and the imaginary unit circle.

definition "unit circle rep = d(1, 0, 0,−1)eH"
lift definition unit circle :: "circline" is unit circle rep

definition "x axis rep = d(0, i,−i, 0)eH"
lift definition x axis :: "circline" is x axis rep

definition "imag unit circle rep = d(1, 0, 0, 1)eH"
lift definition imag unit circle :: "circline" is imag unit circle rep

It is easy to show some basic properties of these circlines. For example:

lemma "0hc ∈ circline set x axis" "1hc ∈ circline set x axis"

"∞hc ∈ circline set x axis"
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Connection with lines and circles in ordinary Euclidean plane. In the extended com-
plex plane, there is no difference between the notion of line and circle. However,
lines can be defined as those circlines whose matrices have coefficient A = 0, or,
equivalently as those circlines that contain the point ∞hc.

definition is line rep where

"is line rep H ←→ (let (A,B,C,D) = bHcH in A = 0)"
lift definition is line :: "circline ⇒ bool" is is line rep

definition is circle rep where

"is circle rep H ←→ (let (A,B,C,D) = bHcH in A 6= 0)"
lift definition is circle :: "circline ⇒ bool" is is circle rep

lemma "is line H ←→ ¬ is circle H" "is line H ∨ is circle H"

lemma "is line H ←→ ∞hc ∈ circline set H"

"is circle H ←→ ∞hc /∈ circline set H"

Every Euclidean circle and Euclidean line (in the ordinary complex plane, using
the standard, Euclidean metric) can be represented by a circline.

definition mk circle rep µ r = d(1, −µ, −cnj µ, |µ|2 − (cor r)2)eH
lift definition mk circle :: "complex ⇒ real ⇒ circline" is mk circle rep

lemma "r ≥ 0 =⇒ circline set (mk circle µ r) = of complex ‘ {z. |z − µ| = r}"
definition mk line rep where "mk line rep z1 z2 =

(let B = i ∗ (z2 − z1) in d(0, B, cnj B, −(B ∗ cnj z1 + cnj B ∗ z1)eH)"
lift definition mk line :: "complex ⇒ complex ⇒ circline" is mk line rep

lemma "z1 6= z2 =⇒
circline set (mk line z1 z2) - {∞hc} = of complex ‘ {z. collinear z1 z2 z}"

The opposite also holds, and the set of points determined by a circline is always
either a Euclidean circle or a Euclidean line. For a given circline, the following
functions determine the corresponding circle or line parameters (the center and
the radius in case of circle or some two different points in case of line).

definition euclidean circle rep where "euclidean circle rep H =

(let (A,B,C,D) = bHcH in (−B/A, sqrt(Re ((B ∗ C −A ∗D)/(A ∗A)))))"
lift definition euclidean circle :: "circline ⇒ complex × real" is

euclidean circle rep

definition euclidean line rep where "euclidean line rep H =

(let (A,B,C,D) = bHcH;
z1 = −(D ∗B)/(2 ∗B ∗ C);
z2 = z1 + i ∗ sgn (if arg B > 0 then −B else B)

in (z1, z2))"

lift definition euclidean line :: "circline ⇒ complex × complex" is

euclidean line rep

The normal vector of the line is the vector orthogonal to the coefficient B — in
order to be able to lift the definition (so that returned points are the same for every
circline representative matrix), in the definition of the second point the vector B
had to be normalized, giving slightly larger expression than z2 = z1 + i ∗B.

Since the cardinality of set of points on the circline depends on the sign of the
expression Re((B∗C−A∗D)/(A∗A)), circlines can be classified into three categories,
depending on the sign of the determinant (which is always a real number, since
the matrix is Hermitian).
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definition circline type rep where

"circline type rep H = sgn (Re (mat det (bHcH)))"
lift definition circline type :: "circline ⇒ real" is circline type rep

The proof obligation H ≈cm H ′ =⇒ circline type rep H = circline type rep

H ′ is easy discharged, as Re (mat det (k ∗sm H)) = (Re k)2 ∗ Re (mat det H)

holds for all Hermitian matrices H and all k with imaginary part 0.
Now, it becomes clear that the set of points on the given circline is empty iff

the circline type is positive (these are called imaginary circlines) , that consists
of a single point iff the type is zero (these are called point circlines), and that it
is infinite iff type type is negative (these are called real circlines). Surprisingly,
this fact turned out to be very hard to prove formally, and was proved only when
Möbius action on circlines was formalized to allow ,,wlog” reasoning. Note that
there are no imaginary lines since when A = 0, then mat det H ≥ 0.

Finally, the connection between real circlines and Euclidean lines and circles
can be established.

lemma

assumes "is circle H" "(µ, r) = euclidean circle H"

shows "circline set H = of complex ‘ {z. |z − µ| = r}"
lemma

assumes "is line H" "(z1, z2) = euclidean line H" "circline type H < 0"
shows "circline set H - {∞hc} = of complex ‘ {z. collinear z1 z2 z}"

Note that the first lemma also holds for point circles and imaginary circles as both
sets are empty. However, the second lemma only holds for real lines as in the case
of a point line it holds that z1 = z2, so the left set is empty, but the right is the
universal set.

Circlines on the Riemann sphere. Real circlines in the plane correspond to circles on
the Riemann sphere, and we have formally established this connection. Every circle
in three-dimensional space can be obtained as the intersection of a sphere and a
plane. We establish a one-to-one correspondence between circles on the Riemann
sphere and planes in space. Note that the plane need not intersect the sphere, but
we will still say that it defines some imaginary circle. The correspondence between
planes in space and circlines in the extended complex plane has been described by
Schwerdtfeger [30]. However, the author failed to note that for one special circline
(the one with the identity representative matrix), there does not exist a plane in
R3 that would correspond to it — in order to have this, instead of considering
planes in R3, we must consider three-dimensional projective space and consider
the infinite (hyper)plane. Therefore, we define the planes in the following way
(again in three stages).

typedef R4 vec6=0 = "{(a, b, c, d) :: R4 vec. (a, b, c, d) 6= 0}"

Note that in R3, one of the numbers a, b, or c would have to be different from
0. However, our definition allows to have the plane (0, 0, 0, d) lying at infinity. The
representation function will be denoted by b cR4, and the abstraction function will
be denoted by d eR4. Again, two planes are equivalent iff they are proportional
(this time by a non-zero real factor).
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definition ≈R4 :: "R4 vec6=0 ⇒ R4 vec6=0 ⇒ bool" where

"α1 ≈R4 α2 ←→ (∃k. k 6= 0 ∧ bα2cR4 = k ∗ bα1cR4)"

Finally, planes (and circles inside them obtained as intersections with the Rie-
mann sphere) are defined as equivalence classes of this relation.

quotient type plane = R4 vec6=0 / ≈R4

Plane coefficients give a linear equation and the point on the Riemann sphere
lies on the circle determined by the plane iff its representation satisfies that linear
equation.

definition on sphere circle rep where

"on sphere circle rep α M ←→
(let (a, b, c, d) = bαcR4; (X, Y , Z) = bMcR3

in a ∗X + b ∗ Y + c ∗ Z + d = 0)"
lift definition on sphere circle :: "plane ⇒ riemann sphere ⇒ bool is

on sphere circle rep

definition sphere circle set :: "riemann sphere set" where

"sphere circle set α = {A. on sphere circle α A}"

Note that we did not need to introduce the points in three-dimensional projective
space (and their homogeneous coordinates) as we are only interested in the points
on the Riemann sphere that are not infinite.

Next, we introduce stereographic and inverse stereographic projection between
circles on the Riemann sphere (i.e., the corresponding planes) and circlines in the
extended complex plane.

definition stereographic circline rep where

"stereographic circline rep α =

(let (a, b, c, d) = bαcR4; A = cor ((c+ d)/2); B = (cor a+ i ∗ cor b)/2);
C = (cor a− i ∗ cor b)/2; D = cor ((d− c)/2))

in d(A,B,C,D)eH"
lift definition stereographic circline :: "plane ⇒ circline" is

stereographic circline rep

definition inv stereographic circline rep where

"inv stereographic circline rep H =

(let (A,B,C,D) = bHcH
in d(Re(B + C), Re(i ∗ (C −B)), Re(A−D), Re(D +A))eR4"

lift definition inv stereographic circline :: "circline ⇒ plane" is

inv stereographic circline rep

These two mappings are bijective and mutually inverse. The projection of the
set of points on a circle on the Riemann sphere is exactly the set of points on the
circline obtained by the stereographic projection that we have just defined.

lemma "stereographic circline ◦ inv stereographic circline = id"

lemma "inv stereographic circline ◦ stereographic circline = id"

lemma "bij stereographic circline" "bij inv stereographic circline"

lemma "stereographic ‘ sphere circle set α =

circline set (stereographic circline α)"
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Chordal circlines. Another interesting fact is that real circlines are sets of points
that are equidistant from some given points (there are always exactly two of them),
but in the chordal metric. On the Riemann sphere these two points (we will call
them chordal centers) are obtained as intersections of the sphere and the line that
goes through the center of the circle and is normal to the plane that contains the
circle.

A chordal circline determined by the given point a and radius r is determined
in the following way.

definition chordal circle rep where "chordal circle rep µc rc =

(let (µ1, µ2) = bµccC2;

A = 4 ∗ |µ2|2 − (cor rc)
2 ∗ (|µ1|2 + |µ2|2); B = −4 ∗ µ1∗cnj µ2;

C = −4∗cnj µ1 ∗ µ2; D = 4 ∗ |µ1|2 − (cor rc)
2 ∗ (|µ1|2 + |µ2|2)

in mk circline rep A B C D)"

lift definition chordal circle :: "complexhc ⇒ real ⇒ circline" is

chordal circle rep

lemma "z ∈ circline set (chordal circle µc rc) ←→
rc ≥ 0 ∧ disthc z µc = rc"

If a circline is given, then its chordal centers and radii can be determined rely-
ing on the following lemmas (depending on whether coefficients B and C in the
representation matrix are zero).

lemma

assumes "is C2 mat herm (A,B,C,D)" "Re (A ∗D) < 0" "B = 0"
shows

"mk circline A B C D = chordal circle ∞hc sqrt(Re ((4 ∗A)/(A−D)))"
"mk circline A B C D = chordal circle 0hc sqrt(Re ((4 ∗D)/(D −A)))"

lemma assumes

"is C2 mat herm (A,B,C,D)" "Re (mat det (A,B,C,D)) < 0" "B 6= 0"
"C ∗ µ2c + (D −A) ∗ µc −B = 0" "rc = sqrt((4 + Re((4 ∗ µc/B) ∗A))/(1 + Re(|µc|2)))"
shows "mk circline A B C D = chordal circle (of complex µc) rc"

As in the previous cases, the function that returns chordal parameters could be
introduced (it would need to distinguish between the cases of B = 0 and B 6= 0 and
in the other case to solve the quadratic equation describing the chordal center).

Symmetry. Since ancient Greeks, the circle inversion was seen as a counterpart of
line reflection. In the extended complex plane there are no substantial differences
between circles and lines. Therefore, we will consider only one kind of relation and
call two points circline symmetric if they are mapped to one another using either
reflection or inversion over arbitrary line or circle. When, seeking the algebraic
characterization of this relation we were a bit surprised how simple and elegant
it was – points are symmetric iff the bilinear form of their representation vectors
and matrix is zero.

definition circline symmetric rep where

"circline symmetric rep z1 z2 H ←→ bilinear form bz1cC2 bz2cC2 bHcH = 0"
lift definition circline symmetric :: "complexhc ⇒ complexhc ⇒

circline ⇒ bool" is circline symmetric rep
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Returning to the set of points on the circline and comparing our two definitions,
it becomes clear that points on the circline are exactly those that are invariant
under the symmetry of the circline.

lemma "on circline H z ←→ circline symmetric H z z"

Möbius action on circlines. We have already seen that Möbius transformation act
on the points of C. They can also act on circlines (and the definition is chosen so
that the two actions are compatible). We also print the definition of congruence
operation of two matrices (defined in our background theory of linear-algebra).

definition "congruence M H = mat adj M ∗mm H ∗mm M"

definition mobius circline rep

:: "C2 mat reg ⇒ C2 mat herm ⇒ C2 mat herm" where

"mobius circline rep M H = dcongruence (mat inv bMcM) bHcHeH"
lift definition mobius circline :: "mobius ⇒ circline ⇒ circline" is

mobius circline rep

Möbius actions on circlines have similar properties as Möbius actions on points.
For example,

lemma "mobius circline (mobius comp M1 M2) =

mobius circline M1 ◦ mobius circline M2"

lemma "mobius circline (mobius inv M) = inv (mobius circline M)"

lemma "mobius circline (mobius id) = id"

lemma "inj mobius circline"

The central lemma in this section connects the action of Möbius transforma-
tions on points and on circlines (and shows that the Möbius transformations map
circlines to circlines).

lemma "mobius pt M ‘ circline set H =

circline set (mobius circline M H)"

Circline type is also preserved (implying, for example, that real circlines are
mapped to real circlines).

lemma "circline type (mobius circline M H) = circline type H"

Another important property (a bit more general than the previous one) is
that the symmetry of points is preserved by Möbius transformations (the so-called
symmetry principle).

lemma assumes "circline symmetric z1 z2 H"

shows "circline symmetric (mobius pt M z1) (mobius pt M z2)

(mobius circline M H)"

The last two lemmas are quite prominent geometrical results, and, due to
the convenient, algebraic representation they were relatively easy to prove in our
formalization. Both proofs rely on the following simple fact of linear algebra.

lemma "mat det M 6= 0 =⇒ "bilinear form z1 z2 H =

bilinear form (M ∗mv z1) (M ∗mv z2) (congruence (mat inv M) H)"
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Circline uniqueness. In Euclidean geometry, it is a well-known fact that there is a
unique line through any two different points and a unique circle through any three
different points. Similar results hold in C. However, a case-analysis over the type
of circlines must be performed. Positive type circlines contain no points, so there
are no uniqueness results for them. Zero type circlines consist of a single point and
for each point there is a unique zero type circline containing it. There is a unique
circline through any three different points (and it must be of a negative type).

lemma "∃! H. circline type H = 0 ∧ z ∈ circline set H"

lemma "Jz1 6= z2; z1 6= z3; z2 6= z3K =⇒
∃! H. z1 ∈ circline set H ∧ z2 ∈ circline set H ∧ z3 ∈ circline set H"

Very surprisingly, we did not manage to prove these lemmas directly. However,
employing ,,wlog” reasoning and mapping the points to canonical position (0hc,
1hc, and ∞hc) gave us very short and elegant proofs (as it was easy to show
computationally that the x axis is the only circline through these three points).
As lines are characterized as exactly those circlines that contain ∞hc, so it is clear
that there is a unique line through any two finite points.

Circline set cardinality. Another thing usually taken for granted is the cardinality of
circlines of different type. We have already said that these proofs required ,,wlog”
reasoning, but this time we have used ,,wlog” reasoning of a different kind. In many
cases it turns out that it is simpler to reason about circles if their center is in the
origin — in those cases, their matrix is diagonal. We have formalized the special
case of the famous result of linear algebra claiming that each Hermitian 2x2 matrix
is congruent to a real diagonal matrix. Moreover, the elements on the diagonal are
the real eigenvalues of the matrix and the congruence is established by a unitary
matrix — a congruence could be also established by a simpler, translation matrix,
but then it would not have so nice properties.

lemma assumes "hermitian H"

shows "∃ k1 k2M. mat det M 6= 0 ∧ unitary M ∧
congruence M H = (cor k1, 0, 0,cor k2)"

The consequence is that for every circline there is a unitary Möbius transfor-
mation that transforms it to a position such that its center is in the origin (in fact,
there are two such transformations if eigenvalues are different). We shall see that
unitary transformations correspond to rotations of the Riemann sphere, so the
last fact has a simple geometrical explanation. Circlines could be diagonalized by
using translations only, but unitary transformations often have nicer properties.

lemma "∃ M H ′. unitary mobius M ∧
mobius circline M H = H ′ ∧ circline diag H ′"

lemma assumes "
∧

H ′. circline diag H ′ =⇒ P H"

"
∧

M H. P H =⇒ P (mobius circline M H)"

shows "P H"

The predicate unitary mobius lifts the unitary condition from C2 matrices to the
mobius type. Similarly, circline diag lifts the diagonal matrix condition to the
circline type.

Using this kind of ,,wlog” reasoning it becomes fairly easy to show the following
characterizations of circline set cardinality.
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lemma "circline type H > 0 ←→ circline set H = {}"
lemma "circline type H = 0 ←→ ∃z. circline set H = {z}"
lemma "circline type H < 0 ←→

∃ z1 z2 z3. z1 6= z2 ∧ z1 6= z3 ∧ z2 6= z3 ∧ circline set H ⊇ {z1, z2, z3}"

An important, non-trivial, consequence of the circline uniqueness and the cir-
cline set cardinality is that the function circline set is injective, i.e., for each
non-empty set of points of a circline, there is a unique class of proportional ma-
trices determining it.

lemma "J circline set H1 = circline set H2; circline set H1 6= {} K =⇒
H1 = H2"

The lemma does not hold for the empty set of points as there are many non-
equivalent matrices determining it (each imaginary circline has the empty set of
points). Although we could have made the definition of circlines that declare all
imaginary circlines to be equivalent, our current definition distinguishes different
imaginary circlines and gives their finer classification. Looking at the Riemann
sphere shows that it is very natural to distinguish different imaginary circlines
since they are identified with different planes that do not intersect the sphere.

3.4 Oriented Circlines

In this section we describe how the orientation is introduced for the circlines.
Many important concepts depend on the orientation. One of the most important
is the concept of disc — inside area of a circline. Similarly as the set of circline
points, the set of disc points is introduced using the quadratic form induced by
the circline matrix — the set of points of the circline disc is the set of points such

that satisfy that A∗ z ∗cnj z+B ∗cnj z+C ∗ z+D < 0, where

(
A B

C D

)
is a circline

matrix representative. Since the set of disc points must be invariant to the choice
of representative, it is clear that oriented circlines matrices are equivalent only
if they are proportional by a positive real factor (recall that unoriented circline
allowed arbitrary non-zero real factors).

definition ≈ocm :: "C2 mat herm ⇒ C2 mat herm ⇒ bool" where

"H1 ≈ocm H2 ←→ (∃ (k::real). k > 0 ∧ bH2cH = cor k ∗sm bH1cH)"

It is easily shown that this is an equivalence relation, so circlines are defined
by a quotient construction as its equivalence classes.

quotient type o circline = C2 mat herm / ≈ocm

Now we can use the quadratic forms to define the interior, boundary and the
exterior of an oriented circline.

definition on o circline rep :: "C2 mat herm ⇒ C2 vec6=0 ⇒ bool" where

"on o circline rep H z ←→ quad form bHcH bzcC2 = 0"

definition in o circline rep :: "C2 mat herm ⇒ C2 vec6=0 ⇒ bool" where

"in o circline rep H z ←→ quad form bHcH bzcC2 < 0"

definition out o circline rep :: "C2 mat herm ⇒ C2 vec6=0 ⇒ bool" where

"out o circline rep H z ←→ quad form bHcH bzcC2 > 0"
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These definitions are then lifted to on o circline, in o circline, and out o circline

(proving the necessary obligations), and, finally, the next three definitions are in-
troduced.

definition o circline set :: "complexhc set" where

"o circline set H = {z. on o circline H z}"
definition disc :: "complexhc set" where

"disc H = {z. in o circline H z}"
definition disc compl :: "complexhc set" where

"disc compl H = {z. out o circline H z}"

These three sets are mutually disjoint, and they fill up the entire plane.

lemma "disc H ∩ disc compl H = {}"
"disc H ∩ o circline set H = {}"
"disc compl H ∩ o circline set H = {}"
"disc H ∪ disc compl H ∪ o circline set H = UNIV"

Given an oriented circline, one can trivially obtain its unoriented counterpart,
and these two share the same set of points.

lift definition of o circline ( #) :: "o circline ⇒ circline" is id

lemma "circline set (H#) = o circline set H"

Note that in the previous lift definition we have introduced the superscript
notation for the function of o circline, so, for example, H# in the lemma is a
shorthand for of o circline H.

For each circline, there is exactly one opposite oriented circline

definition "opp o circline rep H = d−1 ∗sm bHcHeH"
lift definition opp o circline ( ↔) :: "o circline ⇒ o circline" is

opp o circline rep

Finding opposite circline is idempotent, and opposite circlines share the same set
of points, but exchange disc and its complement.

lemma "(H↔)↔ = H"

lemma "o circline set (H↔) = o circline set H"

"disc (H↔) = disc compl H" "disc compl (H↔) = disc H"

The functions # and o circline set are injective in some sense.

lemma "H1
# = H2

# =⇒ H1 = H2 ∨ H1 = H2
↔"

lemma "Jo circline set H1 = o circline set H2; o circline set H1 6= {}K =⇒
H1 = H2 ∨ H1 = H2

↔"

Given a representative Hermitian matrix of a circline, it represents exactly one
of the two possible oriented circlines. The choice of what should be called a positive
orientation is arbitrary. We follow Schwerdtfeger [30], use the leading coefficient
A as the first criterion, and say that circline matrices with A > 0 are called
positively oriented, and with A < 0 negatively oriented. However, Schwerdtfeger
did not discuss the possible case of A = 0 (the case of lines), so we had to extend
his definition to achieve a total characterization.
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definition "pos o circline rep where "pos o circline rep H ←→
(let (A, B, C, D) = bHcH

in Re A > 0 ∨
(Re A = 0 ∧ ((B 6= 0 ∧ arg B > 0) ∨ (B = 0 ∧ Re D > 0))))"

lift definition pos o circline :: "o circline ⇒ bool" is pos o circline rep

Now, exactly one of the two oppositely oriented circlines is positively oriented.

lemma "pos o circline H ∨ pos o circline (H↔)"

"pos o circline (H↔) ←→ ¬ pos o circline H"

The orientation of circles is both algebraically simple (the sign of the coefficient
A) and geometrically natural, due to the following simple characterization.

lemma "∞h /∈ o circline set H =⇒ pos o circline H ←→ ∞h /∈ disc H"

Another nice geometric characterization of positive orientation is that the posi-
tively oriented Euclidean circles contain their Euclidean centers in the disc.

lemma assumes "is circle (H#)" "circline type (H#) < 0"

"(µ, r) = euclidean circle (H#)"

shows "pos oriented H ←→ of complex µ ∈ disc H"

Note that the orientation of lines and point circles is artificially introduced (only
to have a total positive orientation characterization), and it does not have a nat-
ural geometric interpretation. This breaks the continuity of orientation, and we
think that it is not possible to introduce the orientation of lines, so that the orien-
tation function becomes everywhere continuous. Therefore, in most lemmas that
tell something about the orientation we will explicitly exclude the case of lines.

Having a total characterization for the positive orientation allows to create a
coercion from an unoriented to an oriented circline (returning always the positively
oriented circline).

definition of circline rep :: "C2 mat herm ⇒ C2 mat herm" where

"of circline rep H = (if pos o circline rep H then H

else opp o circline rep H)"

lift definition of circline ( 	) :: "circline ⇒ o circline" is of circline rep

There are many elementary properties of the function of circline proved, and
here we list some most important.

lemma "o circline set (H	) = circline set H"

lemma "pos o circline (H	)"

lemma "(H	)
#

= H" "pos o circline H =⇒ (H#)
	

= H"

lemma "H1
	 = H2

	 =⇒ H1 = H2"

Möbius action on oriented circlines. On the representation level, the Möbius action
on an oriented circline is the same as on an unoriented circline.

lift definition mobius o circline :: "mobius ⇒ o circline ⇒ o circline" is

mobius circline rep

Möbius action on (unoriented) circlines could have been defined using the action
on oriented circlines, but not the other way around.
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lemma "mobius circline M H = (mobius o circline M (H	))
#
"

lemma "let H1 = mobius o circline M H; H2 = (mobius circline M (H#))
	

in H1 = H2 ∨ H1 = H2
↔"

Möbius actions on oriented circlines have similar properties as Möbius actions on
unoriented ones. For example, they agree with inverse (lemma "mobius o circline

(mobius inv M) = inv (mobius o circline M)"), with composition, identity trans-
formation, they are injective (inj mobius circline), and so on. The central lem-
mas in this section connects the action of Möbius transformations on points, on
oriented circlines, and discs.

lemma "mobius pt M ‘ o circline set H =

o circline set (mobius o circline M H)"

lemma "mobius pt M ‘ disc H = disc (mobius o circline M H)"

lemma "mobius pt M ‘ disc compl H = disc compl (mobius o circline M H)"

All Euclidean similarities preserve circline orientation.

lemma assumes "a 6= 0" "M = similarity a b" "∞hc /∈ o circline set H"

shows "pos o circline H ←→ pos o circline (mobius o circline M H)"

Orientation of the image of a given oriented circline H under a given Möbius
transformation M depends on whether the pole of M (the point that M maps to
∞hc) lies in the disc or in the disc complement of H (if the pole lies on the circline
H, then the circline maps onto a line and we do not discuss the orientation).

lemma

"0hc ∈ disc compl H =⇒ pos o circline (mobius o circline reciprocation H)"

"0hc ∈ disc H =⇒ ¬ pos o circline (mobius o circline reciprocation H)"

lemma

assumes "M = mk mobius a b c d" "c 6= 0" "a ∗ d− b ∗ c 6= 0"
shows "pole M ∈ disc H −→ ¬ pos o circline (mobius o circline M H)"

"pole M ∈ disc compl H −→ pos o circline (mobius o circline M H)"

Note that this is different to what is claimed by Schwerdtfeger [30]: ,,Reciproca-
tion preserves the orientation of a circle which does not contain 0, but inverts the
orientation of any circle containing 0 as an interior point. Every Möbius trans-
formation preserves the orientation of any circle that does not contain its pole. If
circle contains its pole, then the image circle has its orientation opposite.”. Our
formalization shows that the orientation of the image circle does not depend on
the orientation of the initial one. For example, in the case of reciprocation, the
orientation of the initial circle depends only on the sign of the coefficient A in
a representation matrix (i.e., on the relationship between the circle disc and the
infinite point). On the other hand, since reciprocation exchanges coefficients A and
D, the orientation of the image circle depends only on the sign of the coefficient D
(i.e., on the relationship between the initial circle disc and the point zero — the
pole of reciprocation). The coefficients A and D are totally independent, so the
orientation of the image does not depend on the orientation of the initial circle.

Angle preservation. Möbius transformations are conformal, meaning that they pre-
serve oriented angle between oriented circlines. If angle is defined in purely alge-
braic terms (following Schwerdtfeger [30]), then this property is a very easy to
prove. We also print the definition of a mixed determinant defined in our back-
ground theory of linear algebra.



Formalizing Complex Plane Geometry 29

fun mat det mix :: "C2 mat ⇒ C2 mat ⇒ complex" where

"mat det mix (A1, B1, C1, D1) (A2, B2, C2, D2) =

A1 ∗D2 −B1 ∗ C2 +A2 ∗D1 −B2 ∗ C1"

definition cos angle rep where

"cos angle rep H1 H2 = − Re (mat det mix bH1cH bH2cH) /

2 ∗ (sqrt (Re (mat det bH1cH ∗ mat det bH2cH)))"
lift definition cos angle :: "o circline ⇒ o circline ⇒ complex" is

cos angle rep

lemma "cos angle H1 H2 =

cos angle (moebius o circline M H1) (moebius o circline M H2)"

However, this definition is not intuitive, and for pedagogical reasons we want to
connect it to the more common definition. First, we define the angle between two
complex vectors (� � denotes the angle canonization function described earlier).

definition ang vec ("]") where "] z1 z2 = �arg z2 - arg z1�"

Given a center µ of an ordinary Euclidean circle and a point z on it, we define
the tangent vector in z as the radius vector −→µz, rotated by π/2, clockwise or
counterclockwise, depending on the circle orientation.

definition tang vec :: "complex ⇒ complex ⇒ bool ⇒ complex" where

"tang vec µ z p = sgn bool p ∗ i ∗ (z − µ)"

The Boolean p encodes the orientation of the circle, and the function sgn bool p

returns 1 when p is true, and −1 for when p is false. Finally, angle between two
oriented circles at their common point z is defined as the angle between tangent
vectors at z.

definition ang circ where

"ang circ z µ1 µ2 p1 p2 = ] (tang vec µ1 z p1) (tang vec µ2 z p2)"

Finally, the connection between algebraic and geometric definition of angle cosine
is given by the following lemma.

lemma assumes "is circle (H1
#)" "is circle (H2

#)"

"circline type (H1
#) < 0" "circline type (H2

#) < 0"
"(µ1, r1) = euclidean circle (H1

#)"

"(µ2, r2) = euclidean circle (H2
#)"

"of complex z ∈ o circline set H1 ∩ o circline set H2"

shows "cos angle H1 H2 =

cos (ang circ z µ1 µ2 (pos o circline H1) (pos o circline H2))"

To prove this lemma we needed to show the law of cosines in Isabelle/HOL, but
it turned out to be a rather simple task.

3.5 Some Important Subgroups of Möbius Transformations

We have already described the parabolic group (the group of Euclidean similar-
ities), crucial for the Euclidean plane geometry. Now we will describe character-
izations of two very important subgroups of the Möbius group — the group of
sphere rotations, important for the elliptic plane geometry, and the group of disc
automorphisms, important for the hyperbolic plane geometry.
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Sphere rotations. General unitary group, denoted by GU2(C) is the group that
contains all Möbius transformations represented by generalized unitary matrices.

definition unitary gen where

"unitary gen M ←→ (∃ k::complex. k 6= 0 ∧ mat adj M ∗mmM = k ∗sm eye)"

Although the definition allows any complex factor k, it turns out that k can only be
real. Generalized unitary matrices can be factored into ordinary unitary matrices
and positive multiples of the identity matrix.

definition unitary where "unitary M ←→ mat adj M ∗mmM = eye"

lemma "unitary gen M ←→
(∃ k M ′. k > 0 ∧ unitary M ′ ∧ M = (cor k ∗sm eye) ∗mm M ′)"

The group of unitary matrices is very important as it describes all rotations of
the Riemann sphere (it is isomorphic to the real special orthogonal group SO3(R)).
One characterization of GU2(C) in C is that it is a group of transformations that
leave the imaginary unit circle fixed (this is the circle with the identity represen-
tation matrix, contained in the plane at infinity).

lemma "mat det (A,B,C,D) 6= 0 =⇒ unitary gen (A, B, C, D) ←→
moebius circline (mk moebius A B C D) imag unit circle =

imag unit circle"

The characterization of generalized unitary matrices in coordinates is given by
the following lemma.

lemma "unitary gen M ←→ (∃ a b k. let M ′ = (a, b, −cnj b, cnj a) in

k 6= 0 ∧ mat det M ′ 6= 0 ∧ M = k ∗smM ′)"

Along the way we have also defined the special unitary group SU2(C), contain-
ing generalized unitary matrices with unit determinant. They are recognized by
the form (a, b, −cnj b, cnj a), without the multiple k, and we used this to derive
the coordinate form of generalized unitary matrices.

Disc automorphisms. A dual group to the previous one is the group of generalized
unitary matrices with the 1− 1 signature (GU1,1(C)).

definition unitary11 where

"unitary11 M ←→ mat adj M ∗mm (1, 0, 0,−1) ∗mmM = (1, 0, 0,−1)"
definition unitary11 gen where

"unitary11 gen M ←→ (∃ k::complex. k 6= 0 ∧
mat adj M ∗mm(1, 0, 0,−1)∗mm M = k ∗sm (1, 0, 0,−1))"

Again, the definition allows a complex factor k, but it is shown that only real
factors are plausible.

A characterization of the GU1,1(C) is that it contains all Möbius transforma-
tions that leave the unit circle fixed.

lemma "mat det (A,B,C,D) 6= 0 =⇒ unitary11 gen (A,B,C,D) ←→
moebius circline (mk moebius A B C D) unit circle = unit circle"

The characterization of generalized unitary 1-1 matrices in coordinates is given
by the following lemmas.
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lemma "unitary11 gen M ←→ (∃ a b k. let M ′ = (a, b, cnj b, cnj a) in

k 6= 0 ∧ mat det M ′ 6= 0 ∧ (M = k ∗smM ′ ∨ M = k ∗sm (cis pi, 0, 0, 1) ∗smM ′))
lemma "unitary11 gen M ←→ (∃ a b k. let M ′ = (a, b, cnj b, cnj a) in

k 6= 0 ∧ mat det M ′ 6= 0 ∧ M = k ∗smM ′ )"

Note that the first lemma is subsumed by the second one. However, the first lemma
was simpler to prove, and gives matrices of another shape k∗sm(a, b, −cnj b, −cnj a)
— geometrically, the second kind of transformation combines the first kind with
an additional central symmetry.

Another important characterization of these transformations is via so-called
Blaschke factors. Each transformation is a composition of a Blaschke factor (a
reflection that brings some point that is not on the unit circle to zero), and a
rotation.

lemma assumes "k 6= 0" "M ′ = (a, b, cnj b, cnj a)"
"M = k ∗smM ′" "mat det M ′ 6= 0" "a 6= 0"

shows "∃ k′ φ a′. k′ 6= 0 ∧ a′ ∗ cnj a′ 6= 1 ∧
M = k′ ∗sm (cis φ, 0, 0, 1) ∗mm (1, −a′, −cnj a′, 1)"

The exceptions come when a = 0 and then instead of the Blaschke factor, a
reciprocation is used (the infinity plays the role of a′ in the previous lemma).

lemma assumes "k 6= 0" "M ′ = (0, b, cnj b, 0)" "b 6= 0" "M = k ∗smM ′"
shows "∃ k′ φ. k′ 6= 0 ∧ M = k′ ∗sm (cis φ, 0, 0, 1) ∗mm (0, 1, 1, 0)"

Matrices of GU1,1(C) naturally split into two subgroups. All transformations fix
the unit circle, but the first subgroup consists of transformations that map the unit
disc to itself (so-called disc automorphisms), while the second subgroup consists of
transformations that exchange the unit disc and its complement. Given a matrix,
its subgroup can be determined only on by looking at the sign of the determinant
of M ′ = (a, b, cnj b, cnj a). If only M = (a1, b1, c1, d1), and not M ′ nor k is given,
a criterion to determine the subgroup is the value of sgn(Re ((a1∗d1)/(b1∗c1))−1).

Note that all the important subgroups are here described only in pure algebraic
terms. We have also formalized some more geometric proofs resulting in equivalent
characterization to these we have just described. Additionally, it holds that all
analytic disc automorphisms are compositions of Blaschke factors and rotations
(however, the proofs relies on mathematical analysis, maximum modulus principle,
and the Swartz lemma — techniques that we did not consider). Even the weaker
statement claiming that all Möbius disc automorphisms are of this form has not
yet been formally proved. The crucial step is showing that disc automorphisms fix
the unit circle, and that is something that we did not manage to do without deep
topological investigations that we are currently working on.

4 Discussion

When developing a formal library, an important question is how to define the
notions and formulate their properties so that the proofs become shorter and so
that their large parts can be automated. In this section, we present an example
that demonstrates how complicated it is to formalize a proof when notions are
defined naively, by following classical mathematical material. Although proofs that
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are only semi-formal and that fail to discuss some corner cases are inherently
problematic, the problems often become evident only when one tries to formalize
them within a proof assistant. Namely, readers sometimes do not care much about
corner cases and are usually satisfied with such proofs because they are simple and
intuitive.

In the current example, we will consider one classic definition of angle between
circles and then analyze one classic proof of the angle preservation property of
Möbius transformations that is often encountered in textbooks on the subject
(in the rest of this section we will follow Needham [26] which does not aim to
be a very formal book, but, still, that kind of reasoning is common for many
other authors). Comparison to our purely algebraic definition of angle and the
corresponding proof of the angle preservation property given in Section 3.4 reveals
that the classic proof lacks formality and, therefore, it is very hard to formalize it
within a proof assistant. On the other hand, the classic proof offers more intuition
and better understanding (as it can be visualized).

Angles can be defined between oriented, or unoriented curves and angles them-
selves can be oriented or unoriented. Needham defines angles between two curves
in the following way: ,,Let S1 and S2 be curves intersecting at z. As illustrated, we

may draw their tangent lines T1 and T2 at z. The angle between curves S1 and S2 at

their common point z is the acute angle α from T1 to T2. Thus this angle α has a

sign attached to it: the angle between S2 and S1 is minus the illustrated angle between

S1 and S2.” So, the angle is defined only between unoriented curves (and that is
different from our definition given in Section 3.4), but the angle itself is oriented
(and that is the same as in our definition). We first define the unoriented convex
and the acute angle between two vectors.

definition "]c" where "]c z1 z2 ≡ abs (] z1 z2)"
definition acutize where "acutize α = (if α > π

2 then π - α else α)"
definition "]a" where "]a z1 z2 ≡ acutize (]c z1 z2)"

The function ang circ a is defined as the acute angle between the two tangent
vectors of two intersecting circles (it is similar to ang circ, but the returned angle
must always be acute). As our circles are oriented, we have shown that the acute
angle between the two circles is not affected by the orientation and can only be
expressed in terms of three points (the intersection point and the two centers).

lemma "Jz 6= µ1;z 6= µ2K =⇒ ang circ a z µ1 µ2 p1 p2 = ]a (z − µ1) (z − µ2)"

The angle preservation proof for Möbius transformations in the textbook [26]
relies on the fact that each Möbius transformation can be decomposed to trans-
lations, rotation, dilatation, and inversion. The fact that translations, rotations,
and dilatations preserve angles is taken for granted (and, to be honest, formalizing
this was rather simple, once the underlying notions were defined appropriately).
Therefore, the central challenge is to show that inversion preserves angles, i.e., that
,,inversion in a circle is an anticonformal mapping”. The proof relies on the ,,fact

that given any point z not on the inversion circle K, there is precisely one circle or-

thogonal to K that passes through z in any given direction”. Then the proof proceeds
,,Suppose that two curves S1 and S2 intersect at z, and that their tangents there are T1
and T2, the angle between them being α. To find out what happens to this angle under

inversion in K, let us replace S1 and S2 with the unique circles R1 and R2 orthogonal
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to K that pass through z in the same directions as directions S1 and S2, i.e., circles

whose tangents at z are T1 and T2. Since inversion in K maps each of these circles to

themselves, the new angle at z̃ is −α. Done.”

We have formalized this ,,proof”, but this required tremendous amount of ef-
fort, compared to the sleek algebraic proof described in Section 3.4. First, the
textbook is often imprecise in whether it deals with ,,complex inversion” or ,,ge-
ometric inversion” (i.e., between the reciprocation and the inversion put in our
terms). In the textbook proof, the author uses inversion over any circle K, but
it is sufficient to consider only the reciprocation (always given over the unit cir-
cle). Formalizing the textbook reasoning only for the reciprocation already gave
quite large formulas, and it would be even more complicated and tedious (if not
impossible) to finish the proof using inversion over arbitrary circle. For example,
a simple reciprocation of a circle with a center µ and radius r gives a circle with
the center µ̃ = µ/cor (|µ|2 − r2), and radius r̃ = r/||µ|2 − r2|, and this relationship
would be much more complex for an arbitrary Möbius transformation, if it was
written in coordinates, without using matrix notation.

The formal angle preservation statement is the following (circle µ r denotes
the set {z. |z − µ| = r}, µ1, µ2, µ̃1, µ̃2, z, z̃ are complex numbers, and r1, r2, r̃1,
and r̃2 are real numbers).

lemma

assumes "z ∈ circle µ1 r1" "z ∈ circle µ2 r2"

"reciprocation ‘ circle µ1 r1 = circle µ̃1 r̃1"

"reciprocation ‘ circle µ2 r2 = circle µ̃2 r̃2"

"z̃ ∈ circle µ̃1 r̃1" "z̃ ∈ circle µ̃2 r̃2"

shows "ang circ a z µ1 µ2 = ang circ a z̃ µ̃1 µ̃2"

Apart from missing discussion of many special cases, the informal proof misses
one key ingredient. Namely, it is easy to prove that the intersection of R1 and R2

is z̃ (the intersection of S̃1 and S̃2, the images of S1 and S2 under inversion), but
showing that R1 and S̃1 and that R2 and S̃2 share tangents at z̃ required not so
trivial calculations (that proof relies on the fact that center µ′i of Ri, the center µ̃i
of S̃i, and z̃ are collinear).

Simple symmetry argument showing that the angles between the circles in their
two different intersection points are the same was again not so simple to formalize.

lemma assumes "µ1 6= µ2" "r1 > 0" "r2 > 0"
"{z1, z2} ⊆ circle µ1 r1 ∩ circle µ2 r2" "z1 6= z2"

shows "ang circ a z1 µ1 µ2 = ang circ a z2 µ1 µ2"

We have shown this lemma only after employing ,,wlog” reasoning and moving the
configuration so that the centers of the two circles are on the x-axis.

In the proof, we have found many degenerate cases that had to be analyzed
separately. First, we had to prove that intersecting circles can share the same
center (i.e., that µ1 6=µ2) only if they are the same, and then the acute angle
between tangents is 0. If the two centers are collinear with the intersection point
z (i.e., if collinear µ1 µ2 z holds), the two circles touch (either from inside or
from the outside), and again the acute angle is 0.

Existence of the circle Ri orthogonal to the unit circle, sharing the same tangent
in the given point z with the given circle centered in the given point µi is given
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by the following lemma (ortho unit circ denotes the set of points on the circle
centered in µ′i, orthogonal to unit circle).

lemma

assumes "〈µi - z, z〉 6= 0"
"µ′i = z + (1− z∗cnj z) ∗ (µi − z)/(2 ∗ 〈µi − z, z〉)"

shows "collinear z µi µ
′
i" "z ∈ ortho unit circ µ′i"

The analytic expressions reveal some other degenerate cases. The numerator of the
fraction can be zero only when the circles intersect on the unit circles (i.e., when
z ∗cnj z = 1). In that case, the textbook proof cannot be adapted, as µ′1 = µ′2 = z,
and the circles R1 and R2 cannot not be constructed (they are the empty circles).
The case when denominator is zero (either for µ′1 or µ′2) is also degenerate. That
happens when vectors µi− z and z are orthogonal. Geometrically, in that case the
circle Ri degenerates into a line (what is not a problem in the extended complex
plane, but is a problem in the original proof set in the ordinary complex plane).
Therefore, this special case had to be handled separately. So, our formal analysis
quickly shows that the simple statement in Needham that ,,given any point z not
on the inversion circle K, there is precisely one circle orthogonal to K that passes
through z in any given direction” is not true in many cases.

Problems demonstrated in this example occur in many other proofs in the clas-
sic literature on the subject, showing that our choice of purely algebraic definitions
in our formalization was an extremely important step to keep the formalization
simple and the proofs short.

5 Conclusions and Further Work

In this paper, we have described some elements of our formalization of the geometry
of the complex plane C both as complex projective line and the Riemann sphere,
arithmetic operations in C, ratio and cross-ratio, chordal metric in C, the group
of Möbius transformations and their action on C, some of its special subgroups
(Euclidean similarities, sphere rotations, disk automorphisms), circlines and their
connection with circles and lines, the chordal metric, and the Riemann sphere,
Möbius action of circlines, circline uniqueness, circline types and set cardinality,
oriented circlines, relations between Möbius transformations and the orientation,
angle preservation properties of Möbius transformations, etc. Our current devel-
opment counts around 12,000 lines of Isabelle/HOL code (all proofs are structured
and written in the proof language Isabelle/Isar, and our early attempts that are
subsumed by shorter algebraic proofs are not included), around 125 definitions
and around 800 lemmas.

The crucial step in our formalization was our decision to use the algebraic
representation of all relevant objects (e.g., vectors of homogeneous coordinates,
matrices for Möbius transformations, Hermitian matrices for circlines). Although
this is not a new approach (for example, Schwerdtfeger’s classic book [30] follows
this approach quite consistently), it is not so common in the literature (and in
the course material available online). Instead, other, more geometrically oriented
approaches prevail. We have tried to follow that kind of geometric reasoning in our
early work on this subject, but we have encountered many difficulties and did not
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have so much success. Based on this experience, we conclude that introducing the
powerful techniques of linear algebra makes the work on formalization an order of
magnitude simpler than when using just plain geometric reasoning.

It can be argued that sometimes geometrical arguments give better explana-
tions of some theorems, but when only justification is concerned, the algebraic
approach is clearly superior. However, to keep the connection with the standard,
geometric intuition, several definitions must be introduced (more geometric, and
more algebraic ones), and they must be proved equivalent. For example, when the
definition of angles is given only through algebraic operations on matrices and their
determinants, the angle preservation property is very easy to prove. However, for
educational purposes this becomes relevant only when that definition is connected
with the standard definition of angle between curves (i.e., their tangent vectors),
or, otherwise, the formalization becomes a game with meaningless symbols.

Another important conclusion that we make is that in formal documents, case
analysis should be avoided and extensions that help avoiding it should be pursued
whenever possible (e.g., it was much better to use the homogeneous coordinates
instead of a single distinguished infinity point, it was much simpler to work with
circlines than to distinguish between circles and lines, etc.). Keeping different mod-
els of the same concept (for example, homogeneous coordinates and the Riemann
sphere) also helps, as some proofs are easier in one, and some proofs are easier in
other models.

In principle, our proofs are not long (15-20 lines in average with each Isar state-
ment in a separate line). However, some tedious reasoning was sometimes required,
especially when switching between real and complex numbers (by the conversion
functions Re and cor). These conversions are usually not present in informal texts,
and some better automation of reasoning about them would be welcome. Isabelle’s
automation was quite powerful in equational reasoning about ordinary complex
numbers using (simp add: field simps) (with some minor exceptions). However,
the automation was not so good in the presence of inequalities and we had to
manually prove many things that would be considered trivial in informal texts.

Since in our formalization quotients are intensively used, porting it to some
other prover would require that the prover has good support for them. Introducing
the concepts using quotients is a natural operation in Isabelle/HOL and other
HOL provers, but might pose challenges to other provers. For example, in an
intensional type theory it is not always possible to form the quotient of a type by
an equivalence relation. In Coq, the problem with quotient types is that there is no
general way of forming them, without axioms. One approach considers quotients
of setoids [1] — setoid is a type with an equivalence relation called setiod equality
and quotienting a setiod amounts to changing the setoid equality to a broader
one. A pragmatic approach to quotients in Coq/SSReflect is recently described
by Cohen [2]. Besides quotients, when porting our formalization to other provers,
library support for complex numbers, trigonometric functions and abstract algebra
(automated reasoning in fields, groups, vector and metric spaces, etc.) would be
very welcome.

In our further work we plan to use these results for formalizing non-Euclidean
geometries and their models (especially, spherical model of the elliptic geometry
and the Poincaré disc and upper half-plane models of hyperbolic geometry). We
also plan to generalize our linear algebraic results to arbitrary dimensions, as such
library could be useful in other contexts.
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