
Noname manuscript No.
(will be inserted by the editor)

Extending SMT solvers with support for finite domain
alldifferent constraint?

Milan Banković

the date of receipt and acceptance should be inserted later

Abstract In this paper we consider integration of SMT solvers with the filter-
ing algorithms for the finite domain alldifferent constraint. Such integration
makes SMT solvers suitable for solving constraint satisfaction problems with the
alldifferent constraint involved. First, we present a novel algorithm for explain-
ing inconsistencies and propagations in the alldifferent constraint. We compare
it to Katsirelos’ algorithm and flow-based algorithms that are commonly used for that
purpose. Then we describe our DPLL(T)-compliant SMT theory solver for constraint
satisfaction problems that include alldifferent constraints. We also provide an ex-
perimental evaluation of our approach.

Keywords SMT solving · CSP solving · alldifferent constraint · explanation
algorithms

1 Introduction

Satisfiability modulo theories (SMT) ([2]) is an intensively studied area of research in
recent years. It extends boolean satisfiability (SAT) technologies to support checking
for satisfiability of first order formulae with respect to some first order theory. In this
way, the powerful general purpose techniques used in SAT (clause learning, back-
jumping, efficient search space exploration, etc.) are combined with specific decision
procedures that enable better reasoning about some theories of interest. The theories
that usually appear in SMT are mainly chosen for their applicability in industry —
predominately in software verification (these include arithmetics, bitvectors, theories
of arrays and lists, theory of uninterpreted functions, etc.). Defining new theories

? The final publication is available at Springer via http://dx.doi.org/10.1007/s10601-015-9232-8

Milan Banković
Faculty of Mathematics, University of Belgrade
Studentski Trg 16, 11000 Belgrade, Serbia
E-mail: milan@matf.bg.ac.rs

2 Milan Banković

and incorporating appropriate decision procedures into SMT may extend applica-
bility of SMT solvers to other areas. One such possibility arises from combining
SMT with techniques and algorithms developed within constraint programming (CP)
([33]). Equipped with CP algorithms, SMT solvers would be able to solve constraint
satisfaction problems (CSP) more efficiently than they can do now. The possibility of
such integration has been already suggested in [26] and [27].

With these facts in mind, in this paper we consider extending an SMT solver with
support for the finite domain alldifferent constraint which constrains its variables
to take pairwise distinct values (from their finite domains). This is one of the most
famous global constraints, and its applications vary from puzzle solving, schedul-
ing, timetabling, etc. Because of its applicability, it has been studied intensively over
the last few decades, and several different filtering algorithms have been developed.
The most famous among them is certainly Regin’s filtering algorithm ([30]) that is
based on the matching problem in bipartite graphs and that enforces hyper-arc con-
sistency. The algorithm can be easily incorporated into SMT solvers, provided that it
is extended with explanation capabilities: it must be able to explain inconsistencies
(conflicts in SMT terminology) as well as prunings and assignments (theory prop-
agations in SMT terminology), which is needed for conflict analysis. Since many
modern constraint solvers also support learning and non-chronological backtracking,
the need for explanations also exists in CP world, so the first such algorithms were
developed within constraint solvers. The most notable explaining algorithms are the
one described by Katsirelos ([21]), and those based on the minimal cuts in the flow
networks ([32], [9]). In this paper we consider an alternative explaining algorithm,
based on minimal obstacle set (MOS), that was preliminarily described in [1]. This
paper is the extension of [1], and its main contributions are the following:

– we describe our MOS-based algorithm for explaining inconsistencies and prop-
agations for the alldifferent constraint in more details. We also provide a
comparison with Katsirelos’ and flow-based algorithms, giving an insight of why
our algorithm might be better (Section 3).

– we explain how the integration of the alldifferent algorithms and SMT solver
is achieved (i.e. how these algorithms are adapted to work within SMT environ-
ment). We describe the implementation of our SMT solver for solving CSPs and
provide an usage example (Section 4).

– we present experimental results in order to evaluate our approach (Section 5).

Related work. A survey on alldifferent constraint can be found in [18]. It
presents filtering algorithms that enforce different types of local consistency (in-
cluding already mentioned Regin’s algorithm [30]). When explanation algorithms are
concerned, the reference work is the work of Katsirelos ([21]). It is further extended in
[25], where the same algorithm is presented, but the explanations are now generated
lazily, when needed. An approach to explaining based on the flow networks ([11]) is
considered in [32] and [9]. The explanations obtained in [32] are similar to ours, but
may include redundant literals that our algorithm efficiently eliminates. The explana-
tions obtained in [9] are the same as Katsirelos’, except that the proposed algorithm
can also be used for explaining propagated assignments, while Katsirelos’ algorithm

Extending SMT solvers with support for finite domain alldifferent constraint? 3

explains only prunings (our algorithm also explains both assignments and prunings
in a uniform fashion). In [8], the same authors give a more detailed discussion on
explaining alldifferent. In this work, both bound and hyper-arc consistency of
the alldifferent constraint are considered and the explaining algorithms are pro-
posed in both cases. In the case of hyper-arc consistency, the proposed algorithm is
the same as in [9], so it is equivalent to Katsirelos’ work, with additional assignments
explaining capability. Just like our explaining algorithm, the algorithm proposed in
[9] and [8] can generate explanations lazily.

The use of SAT and SMT technologies in solving CSPs is also a vivid research
area. There is a lot of work on encoding CSP problems into SAT ([40], [29], [38],
[19]). These approaches are eager, i.e. the problem is completely encoded into SAT
and fed to the SAT solver. The SMT approach is also used in solving CSPs ([5],
[20]), where the CSP problems are encoded in SMT-LIB ([3]) language, but only
the standard SMT theories are used in the encoding. To the author’s best knowledge,
there is no published work on developing specific SMT theories for global constraints
and incorporating filtering algorithms for such constraints into SMT (although we are
aware of some work in progress on this topic ([27])).

One interesting approach in using SAT technologies in solving CSPs is so-called
lazy clause generation (LCG) ([28]). In this approach, the SAT solver is integrated
with propagators for global constraints. When a propagator wants to make a propaga-
tion, it generates a clause that represents the inference. The clause is then sent to the
SAT solver, which unit-propagates the corresponding literal. The approach is quite
similar to our approach, since it combines SAT technologies with filtering algorithms
for global constraints. The main difference is in the propagation mechanism: we do
not generate clauses that trigger unit propagations, our propagators work as SMT the-
ory solvers that propagate inferred literals themselves, and later provide the explana-
tions when needed. In recent years, LCG solvers also converged to explaining propa-
gations lazily, as suggested in [39]. In particular, this is the case with alldifferent
explaining, as stated in [8]. The SAT literals are also introduced lazily, just like in our
solver. However, up to our knowledge, the details still remain unpublished.

2 Background

In this paper we assume the standard syntax and semantics of first order logic with
equality, adopting the terminology used in [2]. We also assume that all considered
first order formulae are ground, i.e. do not contain variables. A formula F over some
fixed signature Σ is satisfiable if there exists an interpretation M of the function and
predicate symbols of Σ such that formula F evaluates to true in M (denoted by M �
F). In practice, we are usually restricted to some particular set T of interpretations
over Σ , called a (first order) theory. A formula F is satisfiable in T (or T-satisfiable) if
exists M ∈T such that M � F . The problem of checking T-satisfiability of a first order
formula is called Satisfiability Modulo Theory (SMT) problem. As a special case, a
propositional formula is a ground formula containing only predicate symbols of arity
0, called propositional symbols, that are interpreted either as true or false. Problem
of checking satisfiability of a propositional formula is known as SAT problem.

4 Milan Banković

Procedures for solving SAT and SMT problems are called, respectively, SAT and
SMT solvers. The most successful modern SAT solvers are CDCL solvers (short
for conflict-driven clause learning ([24])), based on famous DPLL algorithm ([7]),
but with many improvements (both algorithmic and implementational). On the other
hand, modern SMT solvers are usually built on top of existing CDCL SAT solvers,
following the so-called lazy approach ([2]) (the most famous such architecture is
known as DPLL(T) ([12])). In essence, this means that an SMT solver consists of a
SAT engine and decision procedures for supported theories (called theory solvers). A
theory solver for T should be able to check the satisfiability of conjunctions of literals
over T and to provide an explanation of unsatisfiability. Beside this, theory solvers
may also have other desirable properties such as incrementality and detection (and
explaining) of theory propagations. The SAT engine searches for a satisfying truth
assignment to literals of the formula in the usual fashion, but consulting the theory
solver when necessary in order to keep the assignment consistent with the theory.

In this paper we also rely on terminology and concepts introduced in [18]. We
only repeat the most important notions here. A Constraint Satisfaction Problem (CSP)
is represented by the triplet (X,D,C), where X = (x1,x2, . . . ,xn) is a finite set of
variables, D = (Dx1 ,Dx2 , . . . ,Dxn) is a set of finite domains, where Dxi is the domain
of the variable xi, C = {C1,C2, . . . ,Cm} is a finite set of constraints. A constraint
C ∈ C over variables xi1 ,xi2 , . . . ,xik is some subset of Dxi1

×Dxi2
× . . . ×Dxik

. The
number k is called arity of the constraint C. A solution of CSP will be any n-tuple
(d1,d2, . . . ,dn) from Dx1 ×Dx2 × . . . ×Dxn such that for each constraint C ∈ C over
variables xi1 ,xi2 , . . . ,xik k-tuple (di1 ,di2 , . . . ,dik) is in C. A CSP problem is consistent
if it has a solution, and inconsistent otherwise.

A constraint C over variables xi1 ,xi2 , . . . ,xik is hyper-arc consistent if for
each value dir ∈ Dxir

(r ∈ {1, . . . ,k}) there are values dis ∈ Dxis
for each s ∈

{1, . . . ,k} \ {r}, such that (di1 , . . . ,dik) ∈ C. Assuming the domains are ordered, a
constraint C over variables xi1 ,xi2 , . . . ,xik is bound consistent if for each value dir ∈
{min(Dxir

),max(Dxir
)} (r ∈ {1, . . . ,k}) there are values dis ∈ [min(Dxis

),max(Dxis
)]

for each s ∈ {1, . . . ,k}\{r}, such that (di1 , . . . ,dik) ∈C. A CSP problem is hyper-arc
consistent (bound consistent) if all its constraints are.

Constraints whose arity is greater then two are often called global constraints.
The one that is especially interesting for us is mentioned alldifferent constraint
defined as follows:

alldifferent(xi1 ,xi2 , . . . ,xik) = {(di1 ,di2 , . . . ,dik) | di j ∈ Dxi j
,r 6= s⇒ dir 6= dis}

3 The alldifferent algorithms

In this section we present all the alldifferent algorithms used in our solver. The
section aims to be self-contained, so we first shortly describe algorithms not con-
tributed by this paper, but important for understanding our novel algorithm. These
include Ford-Fulkerson’s algorithm ([11]), Regin’s algorithm ([30]) and Katsirelos’
algorithm ([21]). After that, we provide a detailed description of the MOS problem
and propose an algorithm for solving it. Then we discuss the application of the MOS

Extending SMT solvers with support for finite domain alldifferent constraint? 5

problem for explaining inconsistencies and propagations for the alldifferent con-
straint. We also compare the explanations obtained by MOS with those obtained by
Katsirelos’ algorithm and the flow-based explaining algorithms.

3.1 Checking for consistency

A bipartite graph B = (U,V,E) is an undirected graph with vertices divided into two
disjoint subsets U and V , such that for each edge (u,v) ∈ E, u is in U and v is in V . A
matching in the bipartite graph B is a set of edges M⊆ E such that no two edges from
M have a vertex in common. If an edge (u,v) belongs to M, we say that the vertices
u and v are matched. A vertex is free if it is not matched with any other vertex. A
matching M is optimal if there is no matching of a greater cardinality (i.e. containing
a greater number of edges). An optimal matching is perfect if all vertices in U are
matched.

We can assign a bipartite graph B = (U,V,E) to a constraint
alldifferent(xi1 , . . . ,xik) in the following way: U contains one vertex ux for
each variable x ∈ {xi1 , . . . ,xik}, and V contains one vertex vd for each value
d ∈

⋃k
j=1 Dxi j

. The edge (ux,vd) belongs to E if and only if d ∈ Dx (each variable
is connected to values from its domain). It is easy to see that the following theorem
holds.

Theorem 1 An assignment xi1 = di1 , . . . ,xik = dik satisfies the constraint
alldifferent(xi1 , . . . ,xik) if and only if M = {(uxi j ,vdi j) | 1 ≤ j ≤ k} is a
perfect matching in B. Consequently, the constraint alldifferent(xi1 , . . . ,xik) is
satisfiable if and only if there is a perfect matching in B. ut

Theorem 1 implies that the alldifferent constraint satisfiability can be reduced to
the problem of finding an optimal matching in B — if such matching is not perfect,
the constraint is unsatisfiable.

One of the procedures commonly used for finding an optimal matching is the
Ford-Fulkerson’s algorithm ([11]). The algorithm starts from some existing (non-
optimal) matching M (possibly empty) and incrementally extends it until an optimal
matching is obtained. The residual graph GB,M for a bipartite graph B with a match-
ing M is the directed graph with the set of vertices U ∪V ∪{s, t} (s, t /∈U ∪V). Its
edges correspond to the edges of B, where edges in M are oriented from V to U , and
edges not in M are oriented from U to V . The vertex s is connected to all vertices
from U — an edge is oriented from s to u ∈ U if u is not matched, and from u to
s otherwise. The vertex t is connected to all vertices from V — an edge is oriented
from t to v ∈ V if v is matched, and from v to t otherwise. It can be proven that the
matching M can be augmented in B if and only if there is a directed path from s to t in
GB,M (a proof of this can be found in [18]). Such paths are called augmenting paths.
After an augmenting path is discovered (by a simple breadth-first search (BFS) based
procedure), the directions of the edges in the path are reversed, and the matching is
changed accordingly (i.e. the edges oriented from V to U are added to the matching,
and those oriented from U to V are removed from the matching). This way, each aug-
menting path increases the cardinality of the current matching by one. The runtime

6 Milan Banković

1)

x1 x2 x3 x4 x5

1 2 3 4 5 6

4)

x1 x2 x3 x4 x5

1 2 3 4 5 6

2)

x1 x2 x3 x4 x5

1 2 3 4 5 6

t

s

3)

x1 x2 x3 x4 x5

1 2 3 4 5 6

t

s

Fig. 1: Ford-Fulkerson’s algorithm

of the procedure depends on the difference between the number of edges in the initial
matching and in the obtained optimal matching. Therefore, the procedure will run
faster if the initial matching is close to optimal. This makes the procedure suitable
for incremental applications (such as SMT).

Example 1 Let us look at the example in Figure 1. The first graph shows a bipartite
graph assigned to an alldifferent constraint (bold edges are in M), and the second
graph is the corresponding residual graph (dashed edges represent an augmenting
path). The third graph is the residual graph after reversing the directions of the edges
in the discovered augmenting path, and the fourth graph shows the new matching in
the bipartite graph.

3.2 Enforcing hyper-arc consistency

In order to enforce hyper-arc consistency on a constraint, we must remove all the
values from the domains of the constraint’s variables that are not part of any assign-
ment satisfying the constraint. The removal of an inconsistent value from a variable
domain is called pruning. As we have already seen, in case of the alldifferent
constraint such values correspond to the edges of the graph that are not part of any
perfect matching. We call such edges inconsistent edges. All such edges should be
found and removed (pruned) from the graph, and the corresponding prunings should
be propagated.

Extending SMT solvers with support for finite domain alldifferent constraint? 7

Another important type of edges are vital edges — the edges that belong to all
perfect matchings. If an edge is vital, it means that the corresponding value is con-
tained in all solutions that satisfy the constraint, so the corresponding assignment
should be propagated.

Edges that are neither vital nor inconsistent, i.e. that belong to some, but not all
perfect matchings are called alternating edges. The following theorem trivially holds.

Theorem 2 Each edge e in a bipartite graph B with a perfect matching M is either
inconsistent, vital or alternating. Furthermore, if an edge e is not alternating, it is
vital if it belongs to the perfect matching M and it is inconsistent otherwise. ut

According to Theorem 2, if we manage to find all the alternating edges in the
graph, then it will be easy to classify the remaining edges as vital or inconsistent,
based on their presence in the perfect matching M. This is the main idea of Regin’s
algorithm ([30]).

1)

x1 x2 x3 x4 x5

1 2 3 4 5 6

t

s

2)

x1 x2 x3 x4 x5

1 2 3 4 5 6

t

s

Fig. 2: Regin’s algorithm

The following theorem gives us an effective way to find all the alternating edges
in a bipartite graph.

Theorem 3 Let B be a bipartite graph with a perfect matching M. An edge e is
alternating in B if and only if it belongs to a directed cycle in the residual graph
GB,M. ut

A proof of Theorem 3 can be found in [4]. The edges belonging to directed cycles of
GB,M can be detected by finding strongly connected components of GB,M. A strongly
connected component (SCC) in a directed graph is a maximal subset of vertices such
that its every two vertices are mutually reachable. An edge (u,v) belongs to some
directed cycle if and only if the vertices u and v are in the same SCC. SCCs can be
found by Tarjan’s depth first search (DFS) based algorithm ([41]).

Example 2 Let us look at the example in Figure 2. Assume that x1 6= 1 is asserted
(i.e. the pruning is imposed on the constraint), causing the removal of the edge (x1,1)
from the graph (dotted edge in the graph 1). When Regin’s algorithm is executed, it

8 Milan Banković

first finds and marks all alternating edges (by running Tarjan’s algorithm). The edges
not marked (dashed edges in the graph 1) are either vital (edge (x5,6)) or inconsistent
(other four dashed edges). After the corresponding assignments and prunings are
propagated, the inconsistent edges are removed from the graph (shown in the graph
2).

Regin’s algorithm can be alternatively described in terms of Hall sets. A Hall set
S is a set of variables such that |S|= |T |, where T is the union of domains of variables
in S (the combined domain). Since variables in S must take distinct values, it follows
that all values in T will be consumed by the variables from S. Therefore, we can
prune the values in T from the domains of variables not in S. Regin’s algorithm in
essence does exactly that: it calls Tarjan’s algorithm to find SCCs, and prunes all the
edges whose vertices are in distinct SCCs. Since SCCs correspond to Hall sets, an
edge crossing between two SCCs actually connects a variable x from one Hall set
with a value d that is consumed by another Hall set. Therefore, x = d cannot be part
of a satisfying assignment.

3.3 Katsirelos’ explanation algorithm

An explanation of a propagation (pruning or assignment) l is any subset E of the set R
of all prunings that occurred before l such that E implies l. Similarly, an explanation
of a conflict (i.e. an inconsistency of the constraint) is any subset E of the set R of all
prunings at the time when the conflict occurred such that E is sufficient to cause the
inconsistency of the constraint. Naturally, we want the explanations to be as small as
possible.

Katsirelos’ explanation algorithm ([21]) directly exploits the previously discussed
relations between the Regin’s algorithm and the Hall sets.

Theorem 4 Let x 6= d be the pruning that should be explained, and let S and T be,
respectively, the Hall set and the corresponding combined domain such that x /∈ S
and d ∈ T . Let E = {x′ 6= d′ | x′ ∈ S, d′ /∈ T}, that is, let E be the set of all prunings
of values from the domains of variables in S, excluding the values from the combined
domain T . Then E is an explanation of the pruning x 6= d.

Proof Notice that the set E is exactly the set of prunings that caused the set S to
become a Hall set. Now, according to the previous discussion, the value d ∈ T cannot
be assigned to the variable x /∈ S, meaning that E implies x 6= d. ut

Since the original Katsirelos’ algorithm produces explanations eagerly, that is,
immediately after Regin’s algorithm has been invoked, the SCCs are known in that
moment, so it is easy to find the SCC that contains a pruned value (i.e. the SCC S∪T
where S is a Hall set and T is its combined domain such that d ∈T). In order to explain
the prunings lazily, the previous state of the graph (at the moment the pruning was
made) must be reconstructed (using the information about the chronology of prunings
that is maintained during the operation of the solver), and then the Tarjan’s algorithm
must be executed again in order to rediscover the SCCs ([25], [15]).

Extending SMT solvers with support for finite domain alldifferent constraint? 9

1)

x1 x2 x3 x4 x5

1 2 3 4 5 6

t

s

2)

x1 x2 x3 x4 x5

1 2 3 4 5 6

t

s

Fig. 3: Katsirelos’ explanations

A conflict may be explained in a similar fashion ([8]). An alldifferent con-
straint is inconsistent if and only if there exists a set of variables S such that |S|> |T |,
i.e. there are more variables in S than values in its combined domain T (the proof of
this fact can be found in [18]). The following theorem describes conflict explanations
based on the Katsirelos’ algorithm.

Theorem 5 Let B be the bipartite graph assigned to an inconsistent alldifferent
constraint, and let M be an optimal (but not perfect) matching in B. Let u ∈ U be
an unmatched vertex (that corresponds to an unassigned variable), S be the set of
variables corresponding to the vertices from U that are reachable from u in GB,M and
let T be the combined domain of S. The set of prunings E = {x′ = d′ | x′ ∈ S, d′ /∈ T}
is an explanation for the conflict.

Proof Notice that the set of vertices reachable from u in GB,M does not contain an un-
matched vertex in V (since the matching is optimal) and it must contain more vertices
from U (corresponding to the set of variables S) than vertices from V (corresponding
to the combined domain T), since the vertex u is unmatched. The set E is exactly the
reason why |S| > |T | and, according to the previous discussion, the reason why the
constraint is inconsistent. ut

Example 3 Continuing Example 2, after the pruning is done, we identify 3 Hall sets
(framed parts of the graph 1 in Figure 3). Two of them correspond to SCCs ({x1,x2}
and {x3,x4}) and the third is a singleton variable set {x5}. The explanation of the
propagated assignment x5 = 6 consists of pruned edges that leave the frame of the
corresponding Hall set (x5 6= 4 and x5 6= 5). The explanation of the pruning x5 6= 4
consists of pruned edges that leave the frame of the Hall set that consumes the value
4 (x3 6= 2 and x3 6= 3). In a similar fashion, the explanation of the pruning x3 6= 3 is
the pruning x1 6= 1.

The graph 2 in Figure 3 is an example of conflict explaining. Let us assume that
x1 6= 1 and x5 6= 6 are asserted. When we prune the corresponding edges (dotted edges
in the graph 2), the vertex x5 is not matched any more. Starting graph traversal from
that vertex, we reach all the vertices within the framed area of the graph. The framed
area contains 5 vertices in U (the set of variables S = {x1,x2,x3,x4,x5}) and 4 vertices

10 Milan Banković

in V (the combined domain T = {2,3,4,5}). Notice that |S| > |T |. The explanation
of the unsatisfiability consists of the pruned edges that leave the frame (x1 6= 1 and
x5 6= 6).

3.4 Minimal obstacle set problem (MOS)

Let G = (V,E) be a directed graph, with a set of start vertices S ⊆ V and a set of
final vertices F ⊆ V . We say that a set of obstacles O ⊆ E separates S from F if an
arbitrary path from any vertex v ∈ S to any vertex f ∈ F contains at least one edge
from O. We say that the vertex v ∈V is blocked by the obstacle set O (or O-blocked)
if O separates the set {v} from F , and that it is O-unblocked otherwise. Clearly, if O
separates S from F , then each v ∈ S is O-blocked, and each f ∈ F is O-unblocked. A
path that contains no obstacles from O is called an obstacle-free or O-free path. A set
of obstacles O that separates S from F is a minimal obstacle set if there is no proper
subset O′ of O that also separates S from F . The following theorem gives necessary
and sufficient conditions for a set of obstacles O to be a minimal obstacle set.

Theorem 6 Given a graph G, and sets of vertices S and F, a set of obstacles O that
separates S from F is minimal if and only if for each obstacle e = (v,w)∈O the vertex
v is reachable from some vertex u ∈ S through some O-free path and the vertex w is
O-unblocked.

Proof Suppose that each edge from O satisfies given conditions. We prove that O is
a minimal obstacle set. Assume the opposite, that some O′ that is a proper subset of
O also separates S from F . Then exists e = (v,w) ∈ O\O′. Since v is reachable from
some u ∈ S through an O-free path, and w is O-unblocked which means that some
vertex f ∈ F is reachable from w through an O-free path, and since e /∈ O′, there is
an O′-free path from u to f and that is in contradiction with the fact that O′ separates
S from F .

Now suppose that O is a minimal obstacle set. We prove that for each edge e =
(v,w)∈O the vertex v is reachable from some vertex u∈ S through some O-free path,
and that the vertex w is O-unblocked. Assume the opposite, that for some obstacle
e = (v,w) there is either no O-free path from vertices from S to v, or there is no O-
free path from w to vertices from F . In this case, the set O′ = O\{e} also separates
S from F , because there is no O′-free path from S to F . This is in contradiction with
the fact that O is a minimal obstacle set. ut

The minimal obstacle set problem (MOS) for a given set of obstacles O that sep-
arates S from F is defined as follows: find an obstacle set Omin ⊆ O such that Omin
also separates S from F and is a minimal obstacle set. It is clear that such set does not
have to be unique.

The procedure findMinimalObstacleSet (Algorithm 1) first looks for obsta-
cles e = (v,w)∈O such that v is reachable (through an O-free path) from some vertex
in S. It calls the procedure BFSFindReachableObstacles (Algorithm 2) that starts
BFS in G from the vertices in S, using only O-free paths. The set of obstacles reached
in that way is denoted by Or. It is easy to argue that Or also separates S from F .

Extending SMT solvers with support for finite domain alldifferent constraint? 11

Require: G = (V,E) is a directed graph, S ⊆V , F ⊆V .
Require: O⊆ E set of obstacles that separates S from F .
Ensure: Omin ⊆ O is minimal obstacle set.

Or = BFSFindReachableObstacles(G,S,O)
Vu = DFSTarjanUnblockedVertices(G,F,Or)
Omin = ∅
for all (v,w) ∈ Or do

if w ∈Vu then Omin = Omin ∪{(v,w)}
return Omin

Algorithm 1: findMinimalObstacleSet(G,S,F,O)

In the second stage, for each obstacle e = (v,w) ∈Or it is checked if the vertex w
is Or-unblocked. For this purpose, the procedure DFSTarjanUnblockedVertices
(Algorithm 3) is called. This procedure returns the set of all Or-unblocked vertices in
G (denoted by Vu). An obstacle e = (v,w) ∈ Or is then added to Omin if and only if
w ∈Vu. According to Theorem 6, such obstacle set Omin is minimal.

Example 4 Consider the graph in Figure 4. The set of start vertices is S = {1}, and
the set of final vertices is F = {7,8}. In the first graph, there is the initial set of
obstacles O = {(2,4),(3,6),(3,5),(4,8)} (the edges marked with the black dots).
The obstacle set Or without the unreachable obstacle (4,8) is shown in the second
graph. Finally, the minimal obstacle set Omin = {(2,4),(3,6)} is shown in the third
graph. The obstacle (3,5) is removed, because the vertex 5 is blocked by the obstacle
(2,4).

Start

1

2 3

4 5 6

7 8

Start

1

2 3

4 5 6

7 8

Start

1

2 3

4 5 6

7 8

Fig. 4: Minimal obstacle set

The procedure DFSTarjanUnblockedVertices (Algorithm 3) deserves more
detailed explanation. It is based on Tarjan’s algorithm for finding SCCs ([41]). The
motivation for using Tarjan’s algorithm for detection of unblocked vertices relies on

12 Milan Banković

Require: G = (V,E) is a directed graph
Require: S ⊆V is a set of start vertices
Require: O⊆ E is a set of obstacles
Ensure: Or is the set of obstacles reachable from S through O-free paths.

q.init() { q is a vertex queue }
Or = ∅
for all u ∈ S do

q.enqueue(u)
u.marked = true

while not q.empty() do
v = q.dequeue()
for all (v,w) ∈ E do

if (v,w) ∈ O then
Or = Or ∪{(v,w)}

else if not w.marked then
w.marked = true

q.enqueue(w)
return Or

Algorithm 2: BFSFindReachableObstacles(G,S,O)

Require: G = (V,E) is a directed graph, F ⊆V
Require: O⊆ E is a set of obstacles
Ensure: Vu is the set of all O-unblocked vertices

index = 1
S.init() {S is a vertex stack}
Vu = ∅
for all v ∈V do

if v.index = unde f then
DFSTarjan rec(v)

return Vu

procedure DFSTarjan rec(v)
v.index = index
v.lowlink = index
index = index+1
S.push(v)
if v ∈ F then Vu = Vu ∪{v}
for all (v,w) ∈ E \O do

if w.index = unde f then
DFSTarjan rec(w)
v.lowlink = min(v.lowlink,w.lowlink)

else if w ∈ S then
v.lowlink = min(v.lowlink,w.index)

if w ∈Vu then Vu = Vu ∪{v}
if v.lowlink = v.index then

repeat
w = S.pop()
if v ∈Vu then Vu = Vu ∪{w}

until w = v

Algorithm 3: DFSTarjanUnblockedVertices(G,F,O)

the following fact: for each SCC W from G, if one of its vertices is unblocked, then
all its vertices are unblocked (due to the mutual reachability of vertices from the same
SCC). Therefore, it is a property of a SCC, not of a vertex itself. We say that a SCC

Extending SMT solvers with support for finite domain alldifferent constraint? 13

W is O-unblocked if its vertices are O-unblocked, and it is O-blocked otherwise. For
better understanding, the original Tarjan’s algorithm is explained first, and then the
modifications included in our algorithm are discussed. Tarjan’s algorithm basically
performs a standard DFS of the graph G. During the search, nodes in V are indexed
in the order in which they are first visited, i.e., in the preorder fashion. The index
assigned to the vertex v is denoted by v.index (initially v.index = unde f , meaning
that the vertex is not visited yet). For a SCC W , the root of W is the vertex from W
that is first visited during the search, i.e., the vertex from W with the lowest preorder
index. Each vertex v is also assigned a number v.lowlink that is computed during the
search and that represents the lowest preorder index of the vertices reachable from v.
Thus, a vertex u is the root of its SCC if and only if u.index = u.lowlink. The vertices
are first pushed on the vertex stack until the root of their SCC is found, when they are
popped from the stack and added to their SCC.

The procedure DFSTarjanUnblockedVertices differs from described Tarjan’s
algorithm in the following two points. First, we consider strong connectivity by using
only O-free paths (i.e. with the set of edges E \O). Second, the algorithm does not
return found SCCs as its output. Instead, it uses them to find the set Vu of O-unblocked
vertices. The procedure adds the following vertices to Vu (and only them):

– if v ∈ F , then v is added to Vu (final vertices are trivially unblocked)
– if (v,w) /∈ O and w is already in Vu, then v is added to Vu.
– if v is the root of a SCC W and v is in Vu, then all vertices in W are added to Vu.

The correctness of the algorithm follows from the next two theorems.

Theorem 7 The procedure DFSTarjanUnblockedVertices is sound: if v is in Vu
at the procedure’s end, then v is O-unblocked.

Proof If a vertex v is added to Vu during the procedure’s execution, then it is either
because v ∈ F , or (v,w) /∈ O and w is already in Vu, or the root of the SCC that v
belongs to is already in Vu. In either of these three cases, let kv be the size of the set
Vu right before v is added to Vu. We prove that v is O-unblocked by induction on kv.
For kv = 0 (i.e. the set Vu is empty), the only applicable is the case when v ∈ F , so v
is trivially O-unblocked. Assume that kv > 0 and the state holds for all k′ < kv. In the
first case, if v ∈ F , then v is again trivially unblocked. In the second case, the vertex v
is being added to Vu because some vertex w is in Vu and (v,w) /∈ O. Since w is added
to Vu before v, then kw < kv, so according to the inductive hypothesis it holds that w is
O-unblocked. Therefore, v is also unblocked, due to the existence of the edge (v,w).
In the third case, the vertex v is being added to Vu because the root w of its SCC is
in Vu. Again, w is added to Vu before v, so kw < kv, meaning that w is O-unblocked,
according to the inductive hypothesis. Therefore, v is also O-unblocked, since there
is a directed path from v to w. This proves that each vertex v that is added to Vu in any
step of the algorithm’s execution is O-unblocked. ut

Theorem 8 The procedure DFSTarjanUnblockedVertices is complete: if u is O-
unblocked, then u will be in Vu at the procedure’s end. ut

Proof For completeness, we must prove that for each unblocked component W , all
its vertices will be added to Vu. In this proof we use the following notation:

14 Milan Banković

– W (v) is the strongly connected component that contains v.
– root(W) is the root of the strongly connected component W .
– root(v) is the root of the strongly connected component that contains v

(i.e. root(v) = root(W (v))).
– a distance of an unblocked strongly connected component W (denoted by d(W))

is the length of the shortest O-free path (v0,v1),(v1,v2), . . . ,(vk−1,vk), such that
v0 ∈W and vk ∈ F . Notice that if W ∩F 6= ∅, then d(W) = 0.

– The recursive call DFSTarjan rec(v) (shortly denoted by v-call) is active if the
procedure executes either v-call or some recursive call invoked directly or indi-
rectly from v-call.

– v → w means that w-call is invoked (directly) from v-call. The reflexive and
transitive closure of the relation → is denoted by v →∗ w (meaning v = w or
v→ v1 → v2 → . . . → w). In other words, v→∗ w means that v-call is still active
while the w-call is executing. Notice that root(v)→∗ v for each vertex v.

– we say that an unblocked vertex v is simply unblocked (or s-unblocked) if v
is added to Vu before v-call ends. Otherwise, it is delayed unblocked (or d-
unblocked). A delayed unblocked vertex v is added to Vu after v-call ends, but
before root(v)-call ends (in the final stage of root(v)-call, when its strongly con-
nected component is poped from the stack).

Notice that if v ∈ F , then v is s-unblocked, since at the beginning of v-call the proce-
dure checks if v is in F and adds v to Vu, accordingly. Thus, v will certainly be in Vu
before v-call ends.

We first prove that if v →∗ w and if w is s-unblocked, then v is also s-unblocked.
To prove this, we first consider the case when v → w. In this case, w-call is called
directly from v-call. When w-call ends and the execution returns to v-call, it will
be detected that w is in Vu (since w is s-unblocked) and v will also be added to Vu.
The same holds for →∗, since it is the transitive closure of →. Notice that, since
root(v)→∗ v, if v is s-unblocked, then root(v) is also s-unblocked.

In the rest of the proof, we show that for each unblocked strongly connected
component W the vertex root(W) is s-unblocked. We prove this by induction on the
distance d(W). For d(W) = 0 the state trivially holds, since there is a vertex v∈W ∩F
and v is s-unblocked, so root(v) = root(W) is also s-unblocked. Assume that the
state holds for d(W) < k. We prove that it holds for d(W) = k. Indeed, if d(W) = k,
this means that there is an O-free path P = (v0,v1),(v1,v2), . . . ,(vk−1,vk), such that
v0 ∈W , vk ∈ F and that is the shortest such path (thus, v1, . . . ,vk /∈W). We prove that
while v0-call is executing v1-call is not active. Indeed, otherwise v1 →∗ v0, meaning
that v0 is reachable from v1. It means that v1 ∈W , opposite to assumption. The same
can be stated for root(v1)-call. This means that v1-call and root(v1)-call are either
both finished or have not been started yet at the moment when the edge (v0,v1) is
visited from v0-call. One of the following can happen:

– v1 has been already visited. In this case, v1-call and root(v1)-call have finished.
W (v1) is also unblocked (through the path P \ (v0,v1) of the length k− 1) and
d(W (v1)) = k− 1 < d(W). Therefore, by induction it follows that root(v1) is s-
unblocked. Because of that, the vertex v1 is in Vu, since all vertices from W (v1)
are added to Vu at the end of root(v1)-call.

Extending SMT solvers with support for finite domain alldifferent constraint? 15

– v1 has not been visited. In this case, v1-call and root(v1)-call have not been
started yet. This means that v1 is the first vertex from W (v1) to be visited, i.e.
root(v1) = v1. The v1-call is then executed. Again, by induction it follows that v1
is s-unblocked and it will be in Vu when v1-call ends.

In both cases, the procedure detects that v1 ∈ Vu and adds v0 to Vu. Since it happens
during the execution of v0-call, the vertex v0 is s-unblocked. Therefore, root(v0) =
root(W) is also s-unblocked.

If for some component W the vertex root(W) is s-unblocked, then at the final
stage of root(W)-call all vertices from W are added to Vu. Since we have proven
that for all unblocked components W their roots are s-unblocked, it follows that all
unblocked vertices will be in Vu at the end of the execution of the procedure. This
proves the completeness. ut

Complexity. Although the procedure findMinimalObstacleSet is based on two
graph traversals, it can be optimized to execute in only one traversal. Namely, the ver-
tices visited during the execution of the procedure BFSFindReachableObstacles
are reachable from S and are certainly Or-blocked (otherwise some vertex u ∈ S
would be unblocked and that is in contradiction with the fact that Or separates S
from F). This means that there is no need to visit these vertices again in the proce-
dure DFSTarjanUnblockedVertices and check if they are unblocked. Therefore,
the complexity is O(|V |+ |E|).

3.5 Using MOS for explanations

Let B be a bipartite graph initially assigned to the constraint
alldifferent(x1, . . . ,xk). After a set R of prunings is asserted, some edges
will be removed from the graph. We denote this set of removed edges by ER, and
the new state of the graph by BR. Assume that BR is in a consistent state, i.e. there
is a perfect matching M in BR, and that Regin’s algorithm detects a vital or an
inconsistent edge in BR. The corresponding propagation (assignment or pruning,
respectively) can be explained at any time later, as stated by the following theorem.

Theorem 9 Consider the MOS problem for the residual graph GB,M, with the set
of obstacles O = ER, the set of start vertices S = {v} and the set of final vertices
F = {u}, where (u,v) is the directed edge that corresponds to the propagated pruning
or assignment. Let Omin be the found minimal obstacle set. The set of prunings that
corresponds to the set of edges in Omin is a minimal propagation explanation.

Proof First, notice that all edges from M are also present in B. The edge (u,v) is
alternating in B, but is vital or inconsistent in BR. It means that all directed cycles that
contained (u,v) in B are now broken due to the removal of edges in ER. Therefore, all
directed paths in GB,M from v to u must contain at least one edge from O = ER — that
means that O is a set of obstacles that separates v from u. Found minimal obstacle
set will correspond to a minimal (in sense of inclusion) propagation explanation —
because of these prunings the edge (u,v) is not alternating in BR. ut

16 Milan Banković

Assume now that BR is in an inconsistent state, that is, an optimal matching M is
not perfect. The conflict explanation may be reduced to MOS in a similar fashion, as
stated by the following theorem.

Theorem 10 Consider the MOS problem in the residual graph GB,M with the set of
start vertices S = {u}, where u is any unmatched vertex from U (that corresponds to
an unassigned variable), the set of final vertices F = {t} and the set of obstacles O =
ER. Let Omin be the found minimal obstacle set. The set of prunings that corresponds
to the set of edges in Omin is a minimal conflict explanation.

Proof Since M is optimal in BR, there is no augmenting path in the residual graph
GBR,M, i.e. all the paths from any unmatched u ∈U to t in the graph GB,M contain at
least one edge from O = ER — that means that the set O separates u from t. Found
minimal obstacle set corresponds to a minimal conflict explanation — because of
these prunings the vertex u cannot be matched in BR. ut

1)

x1 x2 x3 x4 x5

1 2 3 4 5 6

t

s

2)

x1 x2 x3 x4 x5

1 2 3 4 5 6

t

s

Fig. 5: MOS explanations (black dots represent the obstacles)

Example 5 Let us look again at the same graph as in Example 3. The first graph
in Figure 5 is the residual graph, with an obstacle put on the edge (x1,1) (the edge
removed due to the assertion x1 6= 1). Dashed edges correspond to prunings and as-
signments caused by the removal of the edge (x1,1). In order to find an explanation
of the assignment x5 = 6 (the vital edge (6,x5)) we look for a minimal obstacle set
that separates the vertex x5 from the vertex 6. In case of explaining the pruning x5 6= 4
(inconsistent edge (x5,4)), we look for a minimal obstacle set that separates the ver-
tex 4 from the vertex x5. In both cases, it is the obstacle at the edge (x1,1), so the
explanation is x1 6= 1.

We can use the second graph in Figure 5 to describe the conflict explanation al-
gorithm. We put obstacles on edges (x1,1) and (x5,6) that correspond to the asserted
prunings x1 6= 1 and x5 6= 6. In order to find the explanation, we look for a mini-
mal obstacle set that separates s and t. In this case, it includes both obstacles, so the
explanation is x1 6= 1,x5 6= 6.

Extending SMT solvers with support for finite domain alldifferent constraint? 17

3.6 Comparison of MOS and Katsirelos explanations

Comparing examples 3 and 5, we see that Katsirelos’ explanations for the assignment
x5 = 6 and the pruning x5 6= 4 are {x5 6= 4,x5 6= 5} and {x3 6= 2,x3 6= 3}, respectively.
In case of MOS explanations, both are explained by the pruning x1 6= 1. In general,
MOS tends to find explanations that are deeper in the conflict graph than the ones
found by Katsirelos’ algorithm. Let us look again at the propagations found by Re-
gin’s algorithm in Example 2. Described in terms of Hall sets, first the edge (x1,1)
is removed, causing the set {x1,x2} to become a Hall set. Because of this, the edges
(x3,2) and (x3,3) are pruned, causing the set {x3,x4} to become a Hall set. This
causes removal of edges (x5,4) and (x5,5), and because of that the edge (x5,6) be-
comes vital. This means that we have the following chain of implications:

x1 6= 1⇒{x3 6= 2,x3 6= 3}⇒ {x5 6= 4,x5 6= 5}⇒ x5 = 6

In the conflict analysis phase, Katsirelos’ algorithm takes only one step backwards
in this implication chain, while the MOS-based algorithm goes all the way to the be-
ginning of the implication chain. Notice that all three implications in the chain are
actually detected locally within the alldifferent constraint during the execution
of Regin’s algorithm, triggered by the asserted pruning x1 6= 1. The real cause of all
propagations is, thus, the asserted pruning x1 6= 1, but this fact is not captured by
Katsirelos’ algorithm. As we can see from this example, a single pruning can break
a SCC into three or more smaller SCCs. Katsirelos’ algorithm is based on SCCs, so
it can find only minimal Hall sets — those that correspond to SCCs. It is easy to see
that the union of two disjoint Hall sets is also a Hall set, but such Hall sets cannot
be found by Katsirelos’ algorithm. For instance, finding the Hall set {x1,x2,x3,x4}
would produce the explanation x1 6= 1 immediately, but this set remains undiscov-
ered by the Katsirelos’ algorithm. On the other hand, MOS algorithm operates on
the initial graph, with obstacles put only on the edges removed due to the assertions.
Therefore, MOS algorithm can reach the obstacles that are the real cause for propa-
gations.

Of course, this limitation of Katsirelos’ algorithm may be overcome during the
conflict analysis by multiple invocations of the explaining algorithm. However, there
are the cases when this problem cannot be overcome. Let us look at the example in
Figure 6. The example is the same as previous, except we have two asserted prunings
x1 6= 1 and x3 6= 3 (notice that the second pruning would be entailed by the first
in Regin’s algorithm). In the first graph in Figure 6, dotted edges correspond to the
assertions, dashed edges correspond to the propagations, and framed parts correspond
to Hall sets. Katsirelos’ algorithm explains the pruning x5 6= 4 with {x3 6= 2,x3 6= 3} as
before. The pruning x3 6= 2 can be further explained by x1 6= 1, but the pruning x3 6= 3
will not be explained by Katsirelos’ algorithm, since it is not propagated by this
alldifferent constraint (it may be explained by some other propagator, probably
introducing new literals to the conflict). In the second graph in Figure 6, we see
two obstacles that correspond to the asserted prunings. When explaining the pruning
x5 6= 4, the first phase of the MOS algorithm (starting from the vertex 4) finds that
both obstacles are reachable, but in the second stage, the obstacle (x3,3) is eliminated,
since its end vertex 3 is blocked by the obstacle (x1,1). Therefore, the explanation

18 Milan Banković

is x1 6= 1. Notice that we avoid explaining x3 6= 3 by the other propagator, since it
does not contribute to the propagation of x5 6= 4. This example shows that MOS may
potentially give smaller propagation explanations, by eliminating some redundant
parts of the implication graph.

1)

x1 x2 x3 x4 x5

1 2 3 4 5 6

t

s

2)

x1 x2 x3 x4 x5

1 2 3 4 5 6

t

s

Fig. 6: Comparison of Katsirelos’ and MOS explanations

3.7 Comparison of MOS and flow-based explanations

Another interesting approach to alldifferent explanations is based on flow net-
works ([11]). In fact, most of the previous discussion concerning the alldifferent
constraint can be reformulated in terms of flow networks. For instance, the satisfiabil-
ity checking is equivalent to finding a feasible flow in the corresponding flow network
(Figure 7), while the arc-consistency (that is, finding vital and inconsistent edges) is
equivalent to finding maximal and minimal flows in the corresponding edges of the
flow network. In the similar fashion, the problem of explaining inconsistencies and
propagations in the alldifferent constraint can be reduced to explaining maxi-
mal/minimal flows. For instance, explaining the fact that an edge (x,d) cannot be a
part of a perfect matching in B (that is, explaining the pruning x 6= d) is reduced to
explaining why the maximal flow in the edge (x,d) is equal to 0. Similarly, explain-
ing the fact that an edge (x,d) is vital in B (that is, explaining the assignment x = d)
is reduced to explaining why the minimal flow in the edge (x,d) is equal to 1. The
minimal and maximal flow explaining is based on finding minimal cuts in the flow
network (i.e. cuts with minimal capacity), due to the famous min-cut/max-flow theo-
rem ([11]). When such cut is found, a flow bound for one of its incoming edges can
be explained by the flow bounds imposed on its other incoming/outgoing edges ([32],
[9]). The important point here is that the minimal cut is not unique — there can be
more than one minimal cuts and some of them may be preferred for explaining over
others. In this section we briefly discuss different approaches based on minimal cuts
in flow networks and relate them to our approach based on MOS.

Extending SMT solvers with support for finite domain alldifferent constraint? 19

51 1 1 1 1

0 0 0 0 0 0 0 0 0

0 1 1 1 1 1

1 1 1 1 1

x1 x2 x3 x4 x5

1 2 3 4 5 6

t

s

Fig. 7: The flow network for the alldifferent constraint from the previous examples. The lower and
the upper flow bounds for all edges are 0 and 1, respectively, except for the edge (t,s), for which both the
lower and the upper flow bounds are 5 (this guarantees that all the variables are matched). Feasible flows
correspond to perfect matchings. An example of a feasible flow is given by the numbers near the edges.

The first approach is based on discovering SCCs in the residual graph1. Such ap-
proach is considered in [9]. It relies on the fact that the edges (x,d) that cross between
different SCCs in the residual graph coincide with the edges whose flows are fixed at
their lower or the upper bounds — which, in case of the alldifferent correspond
to the pruned and vital edges (the proof of this fact can be found in [31]). This means
that the SCC of the vertex d can be used as a minimal cut for explaining the flow
bounds for (x,d). In the case of the alldifferent constraint, Katsirelos’ algorithm
does exactly that. In [9], this approach is generalized to an arbitrary flow network,
but the authors admit that their approach, applied to the alldifferent constraint,
gives the same explanations as Katsirelos’ algorithm ([9], [8]). We already discussed
how the explanations obtained this way relate to our MOS-based explanations. In
short, the main drawback of this approach is that the explanations must be generated
after the SCC-splitting ([16]) is done and, therefore, these explanations may include
the bounds (prunings in case of the alldifferent) that are also propagated by the
same constraint. This increases the length of the implication chain (as discussed in
the previous section). The algorithm described in [9] can also be used for explaining
assignments, but the same drawback still holds.

The second approach is based on discovering reachable vertices in the residual
graph ([32]). Given an edge (x,d) whose maximal/minimal flow should be explained,
a traversal of the residual graph if started from the vertex d and all vertices reachable
from d are marked. This set of marked vertices is also a minimal cut ([32]) that can
be used for explaining the flow bounds of (x,d). In order to relate such explanations
to our MOS-based explanations, recall that the MOS algorithm explained in Sec-
tion 3.4 has two phases. In the first phase it discovers reachable obstacles (i.e. marks
vertices reachable from d and finds all pruned edges that used to connect these reach-
able vertices to other vertices). In the second phase it eliminates redundant obstacles

1 Notice that our definition of the residual graph from Section 3.1 is rather simplified, compared to the
usual general definition of the residual graph in the flow networks ([31]), but the two definitions coincide
in case of the graph assigned to the alldifferent constraint.

20 Milan Banković

whose end vertices are blocked by other reachable obstacles (which correspond to
the pruned edges that cannot be included in augmenting paths, since their end ver-
tices cannot reach the vertex x). Obviously, the approach from [32] is equivalent only
to the first phase of our MOS algorithm. This means that it can give explanations
that have redundant edges, as admitted by the authors ([32]). In fact, our MOS-based
explanations coincide with the explanations that are formally stated in [32] as the pre-
ferred explanations — a MOS-based explanation includes exactly the pruned edges
that connect the vertices reachable from d with the vertices that can reach the vertex
x (notice that in [32] there is no algorithm provided for obtaining such explanations).

1)

x1 x2 x3 x4 x5

1 2 3 4 5 6

t

s

2)

x1 x2 x3 x4 x5

1 2 3 4 5 6

t

s

3)

x1 x2 x3 x4 x5

1 2 3 4 5 6

t

s

Fig. 8: Comparison of flow-based and MOS-based explanations

Example 6 Consider the same residual graph from the previous examples (Figure
8). Assume that there are three asserted prunings: x1 6= 1, x1 6= 3 and x3 6= 3. These
prunings impose upper flow bounds for the corresponding edges to be equal to 0
(dotted edges in the graphs). The propagation algorithm calculates maximal/minimal
flows in the edges and propagates prunings for those edges with the maximal flow
equal to 0 and assignments for those edges with the minimal flow equal to 1 (dashed
edges in the graphs). Suppose that we want to explain the pruning x5 6= 5. In case
of SCC-based algorithm, first we discover the SCC that contains the vertex 5 (the
framed area in the first graph in Figure 8) and then use it as a cut. Its incoming flow is
bounded from above by 0 because its outgoing flow is bounded from above by 0, due
to the flow bounds in the edges (x3,2) and (x3,3). Thus, the explanation is x3 6= 2,

Extending SMT solvers with support for finite domain alldifferent constraint? 21

x3 6= 3 (the same as Katsirelos’ explanation). Another way to explain the pruning is
to find the set of reachable vertices from the vertex 5, avoiding the dotted edges (the
bold vertices in the second graph in Figure 8). This set of vertices is used as a cut. Its
incoming flow is again bounded from above by 0, but this time because of the bounds
of its outgoing edges’ flows — the explanation is x3 6= 3, x1 6= 1, x1 6= 3. Finally, the
third way to explain the pruning is to use MOS (the third graph in Figure 8). The set
of reachable obstacles consists of all three obstacles (as in the previous case), but our
algorithm recognizes that only one of them (x1,1) indeed breaks a path that leads to
the vertex x5, so the explanation is: x1 6= 1.

4 Solver description

In this section, we describe the structure of our SMT solver and the corresponding
CSP theory2 solver in more details. The solver conforms to DPLL(T) ([12]) archi-
tecture. The main data structures of the SAT engine are the set of clauses F that
must be satisfied, the assertion trail M and the conflict set C. The assertion trail M
is a stack-like sequence of literals that are set to true in the current partial valuation.
To enable non-chronological backtracking (backjumping), the literals in M are par-
titioned into decision levels, starting from the level 0. Literals asserted immediately
after a new level is established are decision literals, while other literals are inferred
literals. Decision literals are suitable backtracking points. The conflict set C is ei-
ther an inconsistent subset of literals in M if such subset exists, or a special no c f lct
value, otherwise.

The operation of the solver can be described in terms of the state transi-
tion rules ([12], [22]) given in Figure 9. Each rule has a set of premises (writ-
ten above the horizontal rule) and an action that changes the state of the solver
(written below the horizontal rule). The Decide rule is a case-splitting rule that
establishes a new decision level in M. The rules UnitPropagate, Conflict
and Explain are used in boolean reasoning, while the rules TheoryPropagate,
TheoryConflict and TheoryExplain describe the reasoning in some theory T.
The rules UnitPropagate and TheoryPropagate are the inference rules. When
a conflict is detected, the Conflict (or TheoryConflict) rule is applied and the
conflict analysis starts. The literals in the conflict set C are explained one by one by
using the Explain and TheoryExplain rules until the first unique implication point
(UIP) ([12]) is reached. Then the Backjump rule is applied, reverting the solver to
an appropriate decision level m, and the search continues. The rule Restart may be
applied periodically to help the solver get out from an unfruitful branch of the search
space.

Theory solvers must implement the interface shown in Figure 10. In order to sup-
port the rules Decide and Backjump, each theory solver must implement procedures
newLevel and backjump that enable reverting its state to some previous point. The
most important procedure to implement is checkAndPropagate procedure. It should

2 The CSP theory refers to the standard first-order theory of integers (as described in SMT-LIB ([3]))
extended with the axioms that define the meaning of the global constraints.

22 Milan Banković

Decide :
l ∈ c c ∈ F l, l /∈M

M := M | l

Backjump :
C = {l, l1, . . . , lk} level(l) > m≥ level(li)

C := no c f lct F := F ∪{l∨ l1 ∨ . . . ∨ lk} M := M[m]l

Restart :
C = no c f lct

M := M[0]

UnitPropagate :
l∨ l1 ∨ . . . ∨ lk ∈ F l1, . . . , lk ∈M l, l /∈M

M := Ml

TheoryPropagate :
M �T l l, l /∈M

M := Ml

Conflict :
C = no c f lct l1 ∨ . . . ∨ lk ∈ F l1, . . . , lk ∈M

C := {l1, . . . , lk}

TheoryConflict :
C = no c f lct l1, . . . , lk �T ⊥ l1, . . . , lk ∈M

C := {l1, . . . , lk}

Explain :
l ∈C l∨ l1 ∨ . . . ∨ lk ∈ F l1, . . . , lk ≺ l

C := C∪{l1, . . . , lk}\{l}

TheoryExplain :
l ∈C l1, . . . , lk �T l l1, . . . , lk ≺ l

C := C∪{l1, . . . , lk}\{l}

Fig. 9: DPLL(T) rules (l denotes the literal opposite to l; M | l means that l is a decision literal; level(l)
denotes the decision level of l; M[m] denotes the prefix of M up to the decision level m; M �T l denotes that
l is a T-consequence of M; symbol ≺ denotes the order of literals in M)

be able to detect T-inconsistencies of M. If a conflict is detected, the procedure gen-
erates an explanation of the conflict and applies the TheoryConflict rule, starting
the conflict analysis. It there is no conflict in T, the procedure looks for T-inferred lit-
erals and propagates them by applying the TheoryPropagate rule (the propagated
literals are then sent to all other interested theory solvers by the SAT engine). The
important parameter of the checkAndPropagate procedure is a deduction layer —
our solver support a layered approach, where cheaper and simpler algorithms may
be invoked first, while the invocation of stronger but more expensive algorithms may
be postponed (or invoked only periodically). A similar approach is already used in
SMT ([6]) and in CP ([34]). Finally, the procedure explainLiteral is called by the
SAT engine during the conflict analysis for literals that are previously propagated by
the theory. The procedure generates explanation of that propagation and applies the
TheoryExplain rule.

Interface procedure Description
newLevel() called by the SAT engine whenever a new decision level is

established in M.
assertLiteral(l) called by the SAT engine whenever a new literal l is

pushed on M
backjump(m) called by the SAT engine whenever it backjumps to the

level m.
checkAndPropagate(layer) checks whether the current trail M is T-consistent and

propagates T-inferred literals to M.
explainLiteral(l) generates an explanation of the propagated literal l and

applies the resolution.

Fig. 10: T-solver interface

Extending SMT solvers with support for finite domain alldifferent constraint? 23

4.1 The input language

The solver accepts inputs in SMT-LIB 2.0 format ([3]). The logic that we use is called
QF_CSP — it is based on the standard QF_LIA logic, but it additionally supports
function symbols that represent global constraints, and also restricts its semantics
such that only finite domains are used. Let us look at the following example:

(set-logic QF_CSP)

(declare-fun x_1 () Int) (declare-fun x_2 () Int) (declare-fun x_3 () Int)

(declare-fun x_4 () Int) (declare-fun x_5 () Int) (declare-fun x_6 () Int)

(assert (and

(<= 1 x_1 9) (<= 1 x_2 9) (<= 1 x_3 9) (<= 1 x_4 9) (<= 1 x_5 9)

(<= 1 x_6 9) (= (+ x_1 x_2) 13) (= (+ (* 2 x_3) x_4 x_5) 25)

(or (<= (- x_2 x_4) 7) (>= (+ x_3 x_6) x_1))

(alldiff x_1 x_2) (alldiff x_1 x_3 x_4 x_5) (alldiff x_2 x_4 x_6)

))

(check-sat)

(get-value (x_1)) (get-value (x_2)) (get-value (x_3))

(get-value (x_4)) (get-value (x_5)) (get-value (x_6))

(exit)

Variables of the CSP are represented by constants of sort Int (x_1 to x_6 in
the example). Since we are solving finite domain CSPs, all the variables must have
finite domains and this must be specified in the formula (in this example, all the
variables take values from the domain {1,2, . . . ,9}). After the domains are specified,
the list of constraints follows. The alldifferent constraint is represented by the
alldiff function symbol. This symbol may be of any arity n ≥ 2, it is applied only
to constants of sort Int and its return sort is Bool. At this moment, the implemen-
tation limits alldiffs only to appear as unit clauses, since the opposite constraint
(i.e. not_alldiff) is still not supported. Beside the alldiff predicates, an input
file may contain arbitrary linear arithmetic constraints. They have the same syntax as
in QF_LIA, and may be combined using the boolean connectives in an arbitrary way.

4.2 CSP theory solver

The CSP theory solver understands two types of literals: constraints (such as
alldifferent(x1,x2,x3), or 2x1−3x2 + x3 = 17) and domain restrictions (such as
x ≤ 7, x = 3, or x 6= 2). Constraint literals correspond to the global constraints that
have to be satisfied, while domain restriction literals correspond to the variable do-
main changes. The SAT engine sends all such literals to the theory solver (by invoking
its assertLiteral procedure) as soon as they appear on the trail M.

The CSP theory solver consists of domain handlers and constraint handlers. We
assign a domain handler to each CSP variable and a constraint handler to each con-
straint appearing in the input formula. A constraint handler may be active or inactive,
depending on whether its corresponding constraint literal is true in M.

The purpose of a domain handler is to initialize and maintain the (finite) domain
of the corresponding variable. It detects trivial consequences between domain restric-
tion literals (like x < 5 � x 6= 7 or x = 3 � x 6= 4) and propagates such inferred literals.

24 Milan Banković

It also detects conflicts due to domain wipeouts, i.e. when all the values are pruned
from the domain.

Constraint handlers are of different types, depending on the type of the global
constraint they represent. Currently, only two types of constraint handlers are imple-
mented — alldifferent constraint handler and weighted_sum constraint handler
(the latter is responsible for the linear arithmetic constraints). Each constraint handler
implements an appropriate filtering algorithm and is able to detect inconsistencies
and to propagate literals that correspond to prunings made by the filtering algorithm.
Constraint handlers must be backtrackable and may support the layered approach.
Finally, a constraint handler must be able to explain conflicts and propagations that it
has detected.

The CSP theory solver implements the interface in the Figure 10 in the following
way. The calls of the procedures newLevel and backjump are simply delegated to all
domain and constraint handlers. When a constraint literal is asserted, the correspond-
ing constraint handler is activated. When a domain restriction literal is asserted, all
active handlers that are affected by the literal (i.e. the domain of one of their vari-
ables is changed) are pushed to the handler queues (there is one such queue for each
supported layer). When checkAndPropagate is invoked at some layer, the handlers
are taken from the corresponding queue one by one and their filtering algorithms
are executed. A handler may implement different algorithms at different layers, or
may execute the same algorithm at all layers — it is only important that the algo-
rithms at higher layers are deductively at least as strong as those at lower layers. A
handler applies the TheoryConflict rule if it detects an inconsistency and applies
the TheoryPropagate rule when the domain of a variable is changed by the filter-
ing algorithm. Since execution of a filtering algorithm may prune additional values
from the variable domains and, thus, propagate more domain restriction literals to M,
the SAT engine may invoke the assertLiteral procedure again. This may cause
adding more constraint handlers to the handler queue, if their variables are affected
by the newly propagated literals. The whole process finishes once the handler queue
becomes empty.

Domain restriction literals are introduced lazily by the constraint handlers, when
the corresponding domain change occurs for the first time. This is very important,
since the number of possible domain restriction literals tends to grow very big, in
case of large CSP problems. The supported domain restriction literals are of the form
x on d, where on∈ {=, 6=,≤,≥,<,>}. Propagation of the domain restriction literals
(through the assertion trail M) is an essential part of the solver execution, since it is
the only communication mechanism between the constraint handlers.

During the conflict analysis, when the interface procedure explainLiteral is
invoked, the CSP theory solver delegates the call to the handler that caused the prop-
agation (this information is stored in the CSP theory solver when the literal is propa-
gated). The handler now generates the explanation and applies the TheoryExplain
rule.

Extending SMT solvers with support for finite domain alldifferent constraint? 25

4.3 The alldifferent constraint handler

The handler for the constraint alldifferent(x1, . . . ,xk) consists of a bipartite graph
whose state can be restored when the Backjump rule is applied. When the domain
restriction literals are asserted, the appropriate edges are removed from the graph.
For each removed edge e, it stores the literal responsible for its removal (denoted by
cause(e)). This information is used for explaining.

The handler has two layers. At the first layer, its checkAndPropagate procedure
detects only simple conflicts such as xi = d,x j = d �⊥, as well as trivial propagations
such as xi = d � x j 6= d (for i 6= j). Therefore, at the first layer the constraint handler
establishes the same level of consistency as the set of disequalities xi 6= x j, where
1≤ i, j ≤ k and i 6= j.

At the second layer the procedure first runs Ford-Fulkerson’s algorithm to check
if there is a conflict. In that case, it invokes the procedure for conflict explanation and
applies the TheoryConflict rule. Otherwise, it runs Regin’s algorithm to detect
and propagate equalities (that correspond to newly found vital edges in the graph)
and disequalities (that correspond to pruned inconsistent edges in the graph).

Both Katsirelos’ algorithm and the MOS-based algorithm for explaining conflicts
and propagations are implemented, in order to compare the behaviour of the two
algorithms within the same solver. Since the obtained explanation is expressed as a
set of pruned edges (as described in Section 3), it must be transformed into the set of
literals by replacing each edge e by the literal cause(e). Notice that the explanation
may also contain inequalities, since an inequality may also be the cause of an edge
removal.

4.4 The weighted sum constraint handler

The weighted sum constraints are represented as a1 · x1 + . . . + ak · xk on c, where
on∈{=, 6=,≤,<,≥,>}, ai and c are integers and xi are finite domain integer variables.
Our weighted sum constraint handler implements the standard algorithm for enforc-
ing bounds consistency in such constraints ([35]). For each variable, new bounds are
calculated based on the bounds of other variables. The values that violate new bounds
are pruned from the domain. The handler then propagates the inequalities that corre-
spond to the calculated bounds. The process is repeated until a fixed point is reached.

5 Experimental results

In this section we present an experimental evaluation of our solver described in the
previous sections (called argosmt). The main goal of the evaluation is to compare the
performance of Katsirelos’ and MOS-based explaining algorithms within our solver.
Another goal is to compare our solver with the state-of-the-art SMT and constraint
solvers. In order to achieve these goals, the experiments were performed with the
following solvers:

26 Milan Banković

– argosmt-mos — our solver3 using MOS explanations
– argosmt-kat — our solver using Katsirelos’ explanations
– sugar-argosmt — Sugar SAT-based constraint solver ([40]) using argosmt as

the back-end SAT solver
– sugar-minisat — Sugar SAT-based constraint solver using minisat4 as the

back-end SAT solver
– minion — Minion constraint solver ([13])
– g12lazy — G125 lazy clause generation solver ([28])
– opturion — Opturion6 lazy clause generation solver
– yices-lia — Yices SMT solver ([10]), using QF_LIA logic and distinct pred-

icate to represent alldifferent
– yices-bv — Yices SMT solver using QF_BV (bitvectors) logic

We tested these solvers on the following six sets of instances:7

sudoku25 — the set consists of 200 randomly generated Sudoku ([23]) instances
of size 25× 25. We used 200s cutoff time per instance. The boards are gener-
ated with around 45% fields filled in — Sudoku exhibits phase transition and these
boards tend to be the hardest ones ([23]). Sudoku instances are encoded using only
alldifferent constraints — one per each row, column and square.

sudoku36 — similarly to the previous set, it consists of 100 randomly generated Su-
doku instances, but of larger size — 36×36 (this time, cutoff is 600s).

kakuro — the set consists of 100 randomly generated Kakuro problems ([37]). We
used the cutoff time of 600s for these instances. The problems are encoded in a
straightforward fashion: for each continuous block of white cells either in a row or in
a column we have one alldifferent constraint that forces the values in the cells to
be pairwise distinct, and one arithmetic constraint that forces the sum of the values in
the cells to be equal to the number given in the corresponding black cell.

golfers — the set consists of 65 Social Golfer ([14]) instances of different sizes.
We used uniform cutoff time of 1200s for all instances, although the hardness of
these instances varies from very easy to extremely hard, depending on the size. The
similar model as in [14] is used. Let m be the number of groups, n be the number
of players per group and p be the number of rounds. The number of players is then
nm, and the players are denoted by numbers 0,1, . . . ,mn− 1. The variable xi jk has
the domain {0,1, . . . ,mn−1} and represents the jth player in ith group in kth round.
For each fixed k ∈ {1, . . . , p} we have one alldifferent constraint over variables
xi jk, for i ∈ {1, . . . ,m}, j ∈ {1, . . . ,n} — it states that in each round none of the
players cannot be at two different positions at the same time. In order to state that
there are no two players that play more than once in the same team, we establish a
“1-1” correspondence between pairs of players and numbers in {0, . . . ,m2n2 − 1} :
(u,v) → nm · u + v. Now, we introduce a variable yi j1 j2k for each pair of variables

3 http://www.matf.bg.ac.rs/∼milan/argosmt/
4 http://minisat.se/
5 http://www.minizinc.org/g12distrib.html
6 http://www.opturion.com/
7 All instances can be found at: http://www.math.rs/∼milan/argosmt/instances.zip

Extending SMT solvers with support for finite domain alldifferent constraint? 27

(xi j1k,xi j2k), where j1 < j2. The domain for all these variables is {0, . . . ,m2n2− 1}.
We introduce arithmetic constraints yi j1 j2k = nm · xi j1k + xi j2k. Finally, we have one
additional alldifferent constraint over all “y” variables — it states that no pair
of players may appear more than once together in the same team. Such encoding is
mainly based on alldifferent, but also includes a lot of arithmetic constraints over
variables with very large domains.

timetabling — this instance set considers a problem that is more suitable for practical
applications: the set consists of 100 randomly generated instances of a variant of the
timetabling problem: we consider a high school with 40 different groups where each
group attends 35 classes per week, scheduled in five working days (seven classes
per day). Each class occupies one of the available time slots of equal lengths (in
each day there are exactly seven time slots). The problem imposes that some of the
classes must be scheduled in blocks (of size 2 or 3) — the classes that form a block
must be scheduled in the same day and must occupy consecutive time slots. In our
instances, there are five 3-blocks and nine 2-blocks, while the remaining two classes
may be scheduled arbitrarily. The classes are taught by a number of teachers, where
each teacher has from 14 to 20 classes per week. The randomization is achieved
by assigning the groups’ classes to the teachers in a random way (the classes that
form a block must be assigned to the same teacher). The number of classes per week
for each teacher is also chosen randomly from the interval [14,20]. To encode the
problem, we introduce a variable xi jk for each teacher i who teaches the kth class to
the group j (according to the class-to-teacher allocation that is known in advance for
each instance). Each such variable has domain {0, . . . ,34} — the value of a variable
xi jk determines the time slot in which the corresponding class takes place (the values
0, . . . ,6 are the time slots of the first day, 6, . . . ,13 are the time slots of the second
day, etc.). To express that ith teacher cannot teach two different classes at the same
time, we impose an alldifferent constraint over all variables xi jk for this fixed i.
Similarly, to express that jth group cannot attend two different classes at the same
time, we impose an alldifferent constraint over all variables xi jk for this fixed j.
Finally, to express the conditions about blocks, we state that for two variables xi jk1
and xi jk2 representing two consecutive classes in a block it holds that xi jk1 +1 = xi jk2 .
Also, in each block, all classes except the last one must not be scheduled in the last
time slot of a day (that is, the corresponding variable cannot take neither of the values
6, 13, 20, 27, 34).

wqgc — the set consists of 100 randomly generated instances of the weighted quasi-
group completion problem8 ([36]). The problem is similar to the standard quasigroup
completion problem, but in addition each cell (i, j) of the corresponding latin square
has an assigned weight pi j – a positive integer from some predefined interval. The
goal is to complete the quasigroup starting from the pre-given values, minimizing the
value of M = mini(∑ j pi jxi j), where xi j are the values of the cells. Of course, this
is an optimization problem, but we consider its decision variant — is there a correct
quasigroup completion such that M ≤K, where K is a positive number? The problem
is encoded using alldifferent constraints over xi j variables (one alldifferent

8 As stated in [36], this problem, as a typical example of a combinatorial design problem, has structural
properties that are often seen in many practical applications.

28 Milan Banković

for each row and column). Also, for each row, we introduce a variable yi = ∑ j pi jxi j
that represents the weighted sum for that row, and assert the clause

∨
i(yi ≤ K) — it

ensures that the minimum of the yi variables is at most K. All instances in the set are
of the size 30×30, the weights are between 1 and 100 and the boards are generated
with around 42% of cells filled in (the point of the phase transition ([17])). The num-
ber K is chosen based on some previously found quasigroup completion, so we know
that all instances are satisfiable.

sudoku25 sudoku36 kakuro
instances cutoff # instances cutoff # instances cutoff

200 300s 100 600s 100 600s
solved avg. time # solved avg. time # solved avg. time

argosmt-mos 200 1.03s 97 99.7s 100 15.7s
argosmt-kat 200 2.46s 69 307s 99 24.7s

sugar-argosmt 188 72.5s 0 600s 100 10.8s
sugar-minisat 200 13.3s 7 456s 100 2.03s

minion 186 35.9s 23 476s 16 520s
g12-lazy 198 21.8s 3 587s 98 20.7s
opturion 198 39.2s 0 600s 100 4.9s
yices-lia 49 277s 0 600s 12 566s
yices-bv 0 300s 0 600s 100 32.4s

golfers timetabling wqgc
instances cutoff # instances cutoff # instances cutoff

65 1200s 100 1200s 100 1200s
solved avg. time # solved avg. time # solved avg. time

argosmt-mos 44 463s 99 187s 82 444s
argosmt-kat 45 458s 99 209s 75 516s

sugar-argosmt 24 780s 12 1160s 0 1200s
sugar-minisat 30 660s 100 103s 0 1200s

minion 22 817s 0 1200s 14 1033s
g12-lazy 51 305s 19 1084s 13 1073s
opturion 43 439s 0 1200s 100 43s
yices-lia 1 1193s 0 1200s 0 1200s
yices-bv 46 492s 0 1200s 0 1200s

Table 1: The table shows for each solver and each instance set the number of solved instances within the
given cutoff time per instance and the average solving time (for unsolved instances, the cutoff time is used)

The results in Table 1 show that the overall performance of our solver with MOS
explaining algorithm is better than with Katsirelos’ algorithm. The greatest speedup
is achieved for sudoku instances, but is also noticeable for wqgc and timetabling in-
stances. At the other side, there is no significant difference in performance on kakuro
and golfers instances. Since the average time alone does not provide enough infor-
mation about the runtime distribution, in Figure 11 we show how runtimes relate on
particular instances. The points above the diagonal line represent the instances for
which MOS explaining algorithm performed better than Katsirelos’ algorithm. The
chart looks quite convincing for sudoku instances (the upper left chart), where most
of the points are highly above the diagonal. The lower two charts show the runtimes
relation on timetabling (left) and wqgc (right) instances — while not so drastic this

Extending SMT solvers with support for finite domain alldifferent constraint? 29

Fig. 11: argosmt-mos vs argosmt-kat solving times: sudoku36 (upper left), kakuro (upper right),
timetabling (lower left), wqgc (lower right)

time, the charts still judge in favor of MOS-based algorithm. Finally, for kakuro in-
stances (the upper right chart), the points are almost evenly scattered on both sides of
the diagonal, so we cannot deduce which algorithm is better. The information about
the search space reduction (Table 2) also confirm that sudoku instances benefit the
most from using MOS for explaining.

Different speedup obtained by using MOS algorithm on different instance sets
may be roughly explained by the number and the lengths of the alldifferent con-
straints appearing in the instances from these sets. As discussed in Section 3.6, the
main benefit of using MOS explaining algorithm may be in making the implication
chains shorter, which is more likely to happen in long alldifferent constraints
(i.e. the constraints with greater arities). As shown in Table 3, sudoku, timetabling
and wqgc instances have both great numbers of the alldifferent constraints and

30 Milan Banković

sudoku25 sudoku36 kakuro
decides # conflicts # decides # conflicts # decides # conflicts

argosmt-mos 388 162 13059 6953 44761 31690
argosmt-kat 705 298 22440 9503 44491 31915

opturion 240008 149023 — — 130489 74390

golfers timetabling wqgc
decides # conflicts # decides # conflicts # decides # conflicts

argosmt-mos 66192 1877 188905 5833 27272 20364
argosmt-kat 58742 1740 220613 5051 28538 21200

opturion 187985 99113 — — 112373 52255

Table 2: The average numbers of decides and conflicts (for solved instances)

great average lengths of these constraints (making the average cumulative length per
instance more than 1500). In case of kakuro, the number of alldifferent constraint
is 124 on average (comparable with sudoku and timetabling instances), but the aver-
age length of the alldifferent constraints is only 4.3. On the other hand, the length
of the alldifferent constraints for the golfers instances is 52 on average, but such
a great average is due to the one large alldifferent per instance (the one with “y”
variables), while others are much shorter. The average number of alldifferent
constraints per instance is only 10, so the cumulative length per instance is only 520
on average, which is much smaller than for sudoku and more comparable with kakuro.
Another interesting information shown in Table 3 that can be useful in explaining the
effectiveness of MOS algorithm on different instance sets is the portion of propa-
gations that came from Regin’s algorithm: in case of sudoku25, about 34% of all
propagations originate from Regin’s algorithm, and about 48% percent of all expla-
nations are the explanations of these Regin’s propagations. For sudoku36, it is about
39% of Regin’s propagations on average, and 47% of Regin’s explanations. For this
reason, the choice of the algorithm for explaining Regin’s propagations has a great
impact on the solver’s performance on these instances. On the other hand, for kakuro
instances, less than 1% of all propagations originate from Regin’s algorithm, and less
than 2% of all explanations concern these propagations. Since the percent of explana-
tions of Regin’s propagations is relatively small, the choice of explanation algorithm
cannot have substantial impact on performance.

sudoku25 sudoku36 kakuro golfers timetabling wqgc
alldiffs 75 108 124 10 126 60

avg. length 25 36 4.3 52 22.2 30
cum. length 1875 3888 546 520 2800 1800

% Regin’s prop. 34% 39% 0.8% 2% 6.4% 0.6%
% Regin’s expl. 48% 47% 1.7% 5.7% 9.5% 7.7%

Table 3: The table shows the average number of alldifferent constraints per instance, the average
length of the alldifferent constraints. and the average cumulative length of all alldifferent con-
straints per instance in each of the instance sets. It also shows the percents of propagations that came from
Regin’s algorithm and the percents of explanations that explain such propagations

Extending SMT solvers with support for finite domain alldifferent constraint? 31

Compared to other solvers, it can be seen (Table 1) that our solver is the best
choice for sudoku instances, while on other problems it is comparable with other
solvers (usually the second best choice). Moreover, if we sum the results on all in-
stance sets, argosmt-mos solved 622 instances in total, while argosmt-kat solved
587 instances. In these terms, the next best solver is opturion which solved only
441 instances in total, while sugar-minisat solved 437 instances. All other solvers
manage to solve significantly fewer instances. It is also important to notice that while
other solvers’ performance is very good on some instance sets, but very bad on oth-
ers, our solver is uniformly good on all instance sets. This makes it quite reliable tool
for solving CSP problems.

Yet another interesting conclusion may be drawn from comparison of the per-
formance of the sugar solver when using argosmt and minisat as back-end SAT
solvers. In Table 1 it can be seen that minisat performs several times better on some
instance sets than our SAT engine. This shows that the implementation of our SAT
engine which drives argosmt solver is still not comparable with the state-of-the-art
SAT solvers (on which some other solvers used in the experiments are based). Mak-
ing the SAT engine faster may further enhance the performance of our solver and
make it more competitive with other tools. An additional clue that may confirm this
hypothesis is the information about the explored search space given in Table 2: the
solver opturion has significantly greater number of decides and conflicts on all in-
stance sets, although on some instance sets it runs faster than our solver. This may
indicate that its implementation is much faster, while the explored search space is
greater than in case of our solver (however, we are not sure whether these numbers
are comparable, since the structure of the search space and the nature of the literals
used by opturion may be very different).

We also see that yices solver, as a general state-of-the-art SMT solver is not a
good choice for solving CSP problems. Using QF LIA logic, the solver shows poor
performance on all instance sets. This might be expected, since this logic is mostly
used for quite different problems in SMT, usually involving infinite or very large do-
mains. When QF BF is used, the solver performs much better on kakuro and golfers
instances, but is still useless on other instances. This confirms our claims that incor-
porating filtering algorithms for global constraints can dramatically improve SMT
technology, when application in CSP solving is concerned.

6 Further work

One direction for future work may be in exploring other possibilities of integration
of SMT and CSP technologies. For instance, incorporating filtering algorithms for
other common global constraints into our SMT solver might extend its applicability
in solving CSP problems. The things may go in the opposite direction too — extend-
ing the alldifferent algorithms to support infinite or very large domains may be
beneficial for SMT solving. Another possible contribution to SMT solving may be
in combination of the proposed CSP theory with other typical SMT theories, such as
the theory of uninterpreted functions, the theory of arrays or the linear arithmetics.

32 Milan Banković

Another possible branch of further work is making the implementation more ef-
ficient, especially when the SAT engine is concerned, but also optimizing the data
structures used in the implementation of CSP algorithms, since the profiling shows
that the operations on these structures take a significant portion of the execution time.

7 Conclusions

In this paper, we presented a new approach in explaining inconsistencies and propa-
gations in alldifferent constraints based on MOS problem that we also introduced
and solved. We compared our algorithm to the standard algorithms that are commonly
used in constraint solvers for that purpose (Katsirelos’ and flow-based explaining al-
gorithms). We used our algorithms along with Ford Fulkerson’s and Regin’s algo-
rithms to develop a DPLL(T)-compliant SMT theory solver that makes SMT solvers
suitable for solving CSPs that include alldifferent constraints. This is very im-
portant, since it shows the potential of SMT in solving problems outside the software
verification area. We presented some experimental results that showed that our algo-
rithm performs better than Katsirelos’ algorithm on alldifferent-dominant CSP
instances. We also compared our prototypical implementation with other state-of-
the-art solvers. Results show that using SMT solvers equipped with special-purpose
algorithms can be comparable with other approaches when solving CSPs.

Acknowledgements This work was partially supported by the Serbian Ministry of Science grant 174021
and by the SNF grant SCOPES IZ73Z0 127979/1. The author is grateful to Filip Marić and to anonymous
reviewers for very careful reading of the text and providing detailed and useful comments and remarks.

References

1. Bankovic, M., Maric, F.: An Alldifferent constraint solver in SMT. In: 8th International Workshop on
Satisfiability Modulo Theories (2010)

2. Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability Modulo Theories. In: Handbook of
Satisfiability, chap. 26, pp. 825–885. IOS Press (2009)

3. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard: Version 2.0. http://smtlib.cs.

uiowa.edu/papers/smt-lib-reference-v2.0-r12.09.09.pdf (2010)
4. Berge, C.: Graphes et hypergraphes (1970)
5. Bofill, M., Palahı́, M., Suy, J., Villaret, M.: Solving constraint satisfaction problems with SAT modulo

theories. Constraints 17(3), 273–303 (2012)
6. Bozzano, M., Bruttomesso, R., Cimatti, A., Junttila, T., Van Rossum, P., Schulz, S., Sebastiani, R.:

An incremental and layered procedure for the satisfiability of linear arithmetic logic. In: Tools and
Algorithms for the Construction and Analysis of Systems, pp. 317–333. Springer (2005)

7. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Communications
of the ACM 5(7), 394–397 (1962). DOI 10.1145/368273.368557. URL http://doi.acm.org/10.

1145/368273.368557
8. Downing, N., Feydy, T., Stuckey, P.J.: Explaining alldifferent. In: Proceedings of the Thirty-fifth

Australasian Computer Science Conference-Volume 122, pp. 115–124. Australian Computer Society,
Inc. (2012)

9. Downing, N., Feydy, T., Stuckey, P.J.: Explaining flow-based propagation. In: Integration of AI and
OR Techniques in Contraint Programming for Combinatorial Optimzation Problems, pp. 146–162.
Springer (2012)

10. Dutertre, B., De Moura, L.: The Yices SMT solver. Tool paper at http://yices. csl. sri. com/tool-paper.
pdf 2, 2 (2006)

Extending SMT solvers with support for finite domain alldifferent constraint? 33

11. Ford, L.R., Fulkerson, D.R.: Maximal flow through a network. Canadian journal of Mathematics 8(3),
399–404 (1956)

12. Ganzinger, H., Hagen, G., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: DPLL(T): Fast Decision Proce-
dures. In: CAV, Lecture Notes in Computer Science, vol. 3114, pp. 175–188. Springer (2004)

13. Gent, I.P., Jefferson, C., Miguel, I.: Minion: A fast scalable constraint solver. In: ECAI, vol. 141, pp.
98–102 (2006)

14. Gent, I.P., Lynce, I.: A SAT encoding for the social golfer problem. Modelling and Solving Problems
with Constraints p. 2 (2005)

15. Gent, I.P., Miguel, I., Moore, N.C.: Lazy explanations for constraint propagators. In: Practical Aspects
of Declarative Languages, pp. 217–233. Springer (2010)

16. Gent, I.P., Miguel, I., Nightingale, P.: Generalised arc consistency for the alldifferent constraint: An
empirical survey. Artificial Intelligence 172(18), 1973–2000 (2008)

17. Gomes, C., Shmoys, D.: Completing quasigroups or latin squares: A structured graph coloring prob-
lem. In: proceedings of the Computational Symposium on Graph Coloring and Generalizations, pp.
22–39 (2002)

18. van Hoeve, W.J.: The alldifferent constraint: A survey. arXiv preprint cs/0105015 (2001)
19. Janicic, P.: Uniform Reduction to SAT. Logical Methods in Computer Science 8(3) (2010)
20. Janicic, P., Maric, F.: Uniform reduction to SMT (2010)
21. Katsirelos, G.: Nogood processing in CSPs. Ph.D. thesis, University of Toronto (2008)
22. Krstic, S., Goel, A.: Architecting Solvers for SAT Modulo Theories: Nelson-Oppen with DPLL. In:

FroCoS, Lecture Notes in Computer Science, vol. 4720, pp. 1–27. Springer (2007)
23. Lewis, R.: Metaheuristics can solve sudoku puzzles. Journal of heuristics 13(4), 387–401 (2007)
24. Marques-Silva, J., Lynce, I., Malik, S.: Conflict-Driven Clause Learning SAT Solvers. In: Handbook

of Satisfiability, chap. 4, pp. 131–155. IOS Press (2009)
25. Moore, N.: Improving the efficiency of learning CSP solvers. Ph.D. thesis, University of St Andrews

(2011)
26. Nieuwenhuis, R.: Sat modulo theories: Enhancing SAT with special-purpose algorithms. In: Theory

and Applications of Satisfiability Testing-SAT 2009, pp. 1–1. Springer (2009)
27. Nieuwenhuis, R., Oliveras, A., Rodrı́guez-Carbonell, E., Rubio, A.: Challenges in satisfiability mod-

ulo theories. In: Term Rewriting and Applications, pp. 2–18. Springer (2007)
28. Ohrimenko, O., Stuckey, P.J., Codish, M.: Propagation via lazy clause generation. Constraints 14(3),

357–391 (2009)
29. Petke, J., Jeavons, P.: The order encoding: from tractable CSP to tractable SAT. In: Theory and

Applications of Satisfiability Testing-SAT 2011, pp. 371–372. Springer (2011)
30. Régin, J.C.: A filtering algorithm for constraints of difference in CSPs. In: AAAI, vol. 94, pp. 362–367

(1994)
31. Régin, J.C.: Generalized arc consistency for global cardinality constraint. In: Proceedings of the

thirteenth national conference on Artificial intelligence-Volume 1, pp. 209–215. AAAI Press (1996)
32. Rochart, G., Jussien, N., Laburthe, F.: Challenging explanations for global constraints. In: CP03

Workshop on User-Interaction in Constraint Satisfaction (UICS03), pp. 31–43 (2003)
33. Rossi, F., Van Beek, P., Walsh, T.: Handbook of constraint programming. Elsevier (2006)
34. Schulte, C., Stuckey, P.J.: Speeding up constraint propagation. In: Principles and Practice of Con-

straint Programming–CP 2004, pp. 619–633. Springer (2004)
35. Schulte, C., Stuckey, P.J.: When do bounds and domain propagation lead to the same search space?

ACM Transactions on Programming Languages and Systems (TOPLAS) 27(3), 388–425 (2005)
36. Sellmann, M., Kadioglu, S.: Dichotomic search protocols for constrained optimization. In: Principles

and Practice of Constraint Programming, pp. 251–265. Springer (2008)
37. Simonis, H.: Kakuro as a constraint problem. Proc. seventh Int. Works. on Constraint Modelling and

Reformulation (2008)
38. Stojadinović, M., Marić, F.: meSAT: multiple encodings of CSP to SAT. Constraints pp. 1–24 (2014)
39. Stuckey, P.J.: Lazy clause generation: Combining the power of SAT and CP (and MIP?) solving. In:

Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization
Problems, pp. 5–9. Springer (2010)

40. Tamura, N., Taga, A., Kitagawa, S., Banbara, M.: Compiling finite linear CSP into SAT. Constraints
14(2), 254–272 (2009)

41. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM journal on computing 1(2), 146–160
(1972)

