
Proving Correctness of a KRK Chess Endgame
Strategy by using Isabelle/HOL and Z3

Filip Marić1, Predrag Janičić1, Marko Maliković2

1 Faculty of Mathematics, University of Belgrade, Serbia
2 Faculty of Humanities and Social Sciences, University of Rijeka, Croatia

Abstract. We describe an executable specification and a total correct-
ness proof of a King and Rook vs King (KRK) chess endgame strategy
within the proof assistant Isabelle/HOL. This work builds upon a pre-
vious computer-assisted correctness analysis performed using the con-
straint solver URSA. The distinctive feature of the present machine veri-
fiable formalization is that all central properties have been automatically
proved by the SMT solver Z3 integrated into Isabelle/HOL, after being
suitably expressed in linear integer arithmetic. This demonstrates that
the synergy between the state-of-the-art automated and interactive the-
orem proving is mature enough so that very complex conjectures from
various AI domains can be proved almost in a ,,push-button“ manner,
yet in a rich logical framework offered by the modern ITP systems.

1 Introduction

Chess has always been a target for developing new techniques and approaches of
artificial intelligence. One field of chess-related research is concerned with chess
endgames where challenges are different from those in openings and midgames.
In computer chess playing, endgames are often played based on or analyzed with
respect to pre-calculated lookup tables (i.e., endgame databases), containing op-
timal moves for each legal position. In contrast, chess endgame strategies do not
necessarily ensure optimal play, but should provide concise, understandable, and
intuitive instructions usable both to human and computer players. One of the
simplest chess endgames is the King and Rook vs King (KRK). There are several
strategies for white for this endgame, generated by humans, semi-automatically,
or automatically [10], but only a few of them are really human-understandable.
Correctness of a strategy should be ensured – if a player follows the strategy,
he should always reach the best possible outcome. Proofs of strategy correct-
ness are typically not given or even not mentioned, although informal proofs
are sometimes provided [4]. Proving correctness of chess endgame strategies can
be addressed using different approaches [10]. The first approach is a traditional,
“pen-and-paper” with the drawback of often having missing parts or errors in
the arguments. Computer assisted proofs can be classified according to two in-
dependent dimensions: proofs can be either indirect or direct, and can be either
informal or formal. Indirect proofs are based on enumerations and case-analyses.

For example, the strategy can be applied to all legal positions and a correspond-
ing endgame-database can be generated, which is then verified using a retrograde
procedure (in the style of Thompson’s work [13]). Direct proofs are high-level,
mathematical proofs that explicitly formulate properties of the strategy (precon-
ditions, postconditions, invariants, termination measures), prove them and show
that they imply the strategy correctness. Informal proofs use unverified pro-
grams (either developed in a general-purpose programming language or in some
specialized constraint programming system) to check many different positions
or to discharge informally stated proof-obligations that somehow contribute to
the overall informal correctness arguments. Formal proofs are machine-verifiable
proofs, checked within a strict logical system of a proof-assistant.

A SAT-based constraint solver URSA [9] has been used for checking key cor-
rectness properties for a KRK endgame strategy [10] in a direct, but informal
manner. The strategy considered was a slight modification of the one originally
formulated by Bratko [4]. Bratko’s original paper also contains a very informal
correctness proof sketch. The strategy was described within the constraint solv-
ing system and several high-level lemmas were formulated and automatically
checked by using the power of the constraint solver. The main feature of those
proofs is that they required very little human effort and human reasoning. On
the other hand, as the authors noted, although the main body of the proof is
covered by the checked lemmas, some building blocks were missing to make the
proof complete and glued together, mainly due to the lack of expressibility of
constraint solving systems (e.g., one cannot express inductive definitions or in-
ductive arguments in a system such as URSA). Also, the proof relies on the
definitions specific for the KRK endgame, so there is no link with the rules for
the original game of chess. The final conclusion was that, in order to have a full
and completely reliable proof, a constraint solver must be replaced by some more
expressible reasoning system such as proof-assistants. We believe that modern
proof-assistants (e.g., Isabelle/HOL, Coq, HOL-Light), connected to powerful
external automated theorem provers and solvers (e.g., Z3, Vampire, Spass, E-
prover) are now capable of proving extremely complex combinatorial conjectures,
such as those coming from chess. For instance, Isabelle/HOL has been connected
to SMT solvers [3], enabling users to employ SMT solvers to discharge complex
goals that arise in interactive theorem proving. SMT solvers provide object-level
proofs for unsatisfiable formulas and these proofs are then reconstructed within
Isabelle/HOL, yielding formal proofs in the above sense.

In this paper, we describe our successful experience with formalizing the KRK
endgame correctness proof within Isabelle/HOL. The present formalization is
complete and self-contained, and it provides an executable version of the strategy
that is proved to be correct (winning for white) with respect to the rules of chess.
One of our key goals was that all central lemmas must be proved automatically, if
possible — in a ,,push-button” manner, as it was done within the URSA system.
This turned out to be possible, due to the powerful integration of SMT solvers
(in particular — Microsoft Research z3 solver) into Isabelle/HOL. In the paper
we briefly describe some interesting parts of the formalization. Full formalization
is available at http://argo.matf.bg.ac.rs/formalizations/.

2 Chess Rules and Endgame Strategies

In this section we describe the formalization of chess rules and the general theory
of chess endgame strategies in Isabelle/HOL.

Chess Rules. The first cornerstone of our formalization are the rules of chess,
as given in the FIDE handbook [6]. Hurd has already formalized these rules
in HOL [7], and we closely follow his work. Like Hurd, we consider pawnless
endgames, and do not consider castling (although our strategy is only for the
KRK endgame, we want our basic definitions to be close to general chess rules
and to allow later extensions to other endgames, so initial definitions cover other
pieces as well). Basic types are defined as follows.

side = White | Black

piece = King | Queen | Rook | Bishop | Knight

square = "int × int"

We can define many relevant notions using only arithmetic operations and
relations over squares coordinates. We show only some examples. The func-
tion on board (f,r) ←→ 0 ≤ f ∧ f < F ∧ 0 ≤ r ∧ r < R checks if the
square is on the board (global constants F = 8 and R = 8, for files and ranks,
determine the size of the board). We can check if a square sq is between two given
squares sq1 and sq2 either horizontally, vertically, or diagonally (this is denoted
by sq btw sq1 sq sq2). We can define the scope of each piece (i.e., whether a
piece can reach one square from another).

king scope (f1,r1) (f2,r2) ←→ |f1 − f2| ≤ 1 ∧ |r1 − r2| ≤ 1 ∧ (f1 6= f2∨r1 6= r2)

rook scope (f1,r1) (f2,r2) ←→ (f1 = f2 ∨ r1 = r2) ∧ (f1 6= f2 ∨ r1 6= r2)

For two squares of the chessboard, the Manhattan distance (mdist (f1, r1) (f2, r2)
= |f1 − f2| + |r1 − r2|) is the sum of distances along both coordinates, and the
Chebyshev distance (cdist (f1, r1) (f2, r2) = max |f1− f2| |r1− r2|) is the min-
imal number of moves a king requires to move between them.

Chess positions can be represented in various ways (e.g., by an 8x8 matrix
implicitly mapping positions to pieces, or by a list of piece positions, implicitly
mapping pieces to positions). So, instead of fixing a concrete representation,
we create an abstraction in a form of an Isabelle/HOL locale [2] and assume
that chessboard positions will be represented by some type ’p (usually a record
type). Only some values of the type ’p will correspond to valid positions, so we
introduce a data-structure invariant pos inv p that is used to exclude values
that are invalid. For example, a type ’p might be a mapping that maps pieces to
squares that they are on. In that case, the invariant should require that all pieces
map to different squares, since if two pieces are mapped to the same square, the
position would clearly be invalid. For each position, we must be able to check
whether white or black is on turn (this is done using the function turn p), and
for each square to determine if there is a piece on that square and – if yes, what
piece it is (this is done using the function on sq p sq that maps each square sq
to either None, or to Some piece and its side).

locale Position =

fixes pos inv :: "’p ⇒ bool"

fixes turn :: "’p ⇒ side"

fixes on sq :: "’p ⇒ square ⇒ (side × piece) option"

All chess rules can be defined within this locale, they are parametric, and
depend on the type ’p and the above three functions. For example, in a posi-
tion p, for a square sq we can check if it is empty (empty p sq ←→ on sq p sq
= None), or occupied by a piece of a side sd (occupies p sd sq ←→ (∃ pc.
on sq p sq = Some (sd, pc))). In a position p, a square sq1 attacks sq2 if the
line between them is clear (clr line p sq1 sq2 ←→ (∀ sq. sq btw sq1 sq sq2
−→ empty p sq))1, and if there is a piece on sq1 such that sq2 is in its scope.

attacks p sq1 sq2 ←→ clr line p sq1 sq2 ∧
(case on sq p sq1 of

None ⇒ False

| Some (, King) ⇒ king scope sq1 sq2
| Some (, Rook) ⇒ rook scope sq1 sq2
...)

A side sd is in check in a position p if its king is on a square sq1, and there is
an opponent’s piece on some square sq2 such that it attacks the king on sq1.

in chk sd p ←→ (∃ sq1 sq2. on sq p sq1 = Some (sd, King) ∧
occupies p (opp sd) sq2 ∧ attacks p sq2 sq1)

A position is legal if its satisfies the invariant, if all pieces are within the board
bounds, and if the opponent of the player on turn is not in check2.

all on board p ←→ (∀ sq. ¬ empty p sq −→ on board sq)

lgl pos p ←→ pos inv p ∧ all on board p ∧ ¬ in chk p (opp (turn p))

Legal moves are defined by the chess rules and from legal positions they lead to
legal positions. The function lgl move p p′ checks if the position p′ is a result of
a legal move from the position p. Finally, we define game outcomes (checkmate,
stalemate, and draw).

game over p ←→ lgl pos p ∧ ¬ (∃ p′. lgl move p p′)

checkmate p ←→ game over p ∧ in chk p (turn p)

stalemate p ←→ game over p ∧ ¬ in chk p (turn p)

A game is drawn if the position is such that neither player can possibly mate. To
formalize this, we inductively define the set of positions reachable from a given
position p0 by applying only legal moves.

p0 ∈ reachable p0
Jp ∈ reachable p0; lgl move p p′K =⇒ p′ ∈ reachable p0

draw p ←→ ¬ (∃ p′. p′ ∈ reachable p ∧ checkmate p′)

1 Since squares that a knight attacks are not on the same line with the square that it
is on, the clear line condition is always satisfied.

2 This definition is weaker then the one given by FIDE, as it does not take into account
reachability from the initial position. Still, this does not threaten the correctness of
our results, as we do cover all legal positions in the strong FIDE sense.

Endgame Strategies. The strategy for white is given by st wht move p p′ —
a relation describing all positions p′ that can be reached from p by a strategy
move. A strategy is deterministic if there is always at most one such position. For
each legal position with white on turn, a strategy returns only legal moves. Addi-
tionally, a strategy can be characterized by an invariant maintained throughout
a play (e.g., in KRK endgame, white rook must not be captured, otherwise the
game would be drawn). We define a slot for such invariant (st inv p) and re-
quire that each move of white, and each move of black following a move of white
maintains it.

locale Strategy = Position +

fixes st wht move :: "’p ⇒ ’p ⇒ bool"

fixes st inv :: "’p ⇒ bool"

assumes
Jlgl pos p; turn p = White; st inv p; st wht move p p′K =⇒ lgl move p p′

Jlgl pos p; turn p = White; st inv p; st wht move p p′K =⇒ st inv p′

Jlgl pos p; turn p = White; st inv p; st wht move p p′; lgl move p′ p′′K
=⇒ st inv p′′

A strategy play is a sequence of alternating moves: strategy moves by white,
and arbitrary legal moves by black. The set of reachable positions in a play is
defined as an inductive set.

st move p p′ ←→ (turn p = White ∧ st wht move p p′) ∨
(turn p = Black ∧ lgl move p p′)

p0 ∈ st reachable p0
Jp ∈ st reachable p0; st move p p′K =⇒ p′ ∈ st reachable p0

A strategy for white is winning if it is terminating and partially correct, i.e.,
if every strategy play starting from a legal position p0 with white on turn that
satisfies the strategy invariant, terminates in a position where black is mated. If
there is no infinite strategy play, there is no set P containing p0 such that for
each position in P a strategy move can be made.

st start p0 ←→ turn p0 = White ∧ lgl pos p0 ∧ st inv p0

locale WinningStrategy = Strategy + assumes
st start p0 =⇒ ¬ (∃ P. p0 ∈ P ∧ (∀ p ∈ P. ∃p′ ∈ P. st move p p′))

Jst start p0; p ∈ st reachable p0; ¬ (∃ p′. st move p p′)K =⇒
turn p = Black ∧ checkmate p

It can be proved that a strategy is winning for white if there is a well-founded
ordering of subsequent white-on-turn positions in each strategy play, if white can
always make a strategy move, and it never leads to a stalemate. Therefore, a
strategy is winning for white if it meets assumptions of WiningStrategyOrdering
(since it a sublocale of the WiningStrategy, i.e., if the assumptions of the former
are satisfied, the assumptions of the latter are satisfied too).

locale WinningStrategyOrdering = Strategy +

fixes ordering :: "’p ⇒ (’p × ’p) set"

assumes

Jst start p0K =⇒ wf (ordering p0)

Jst start p0; p∈ st reachable p0; turn p = White;

st wht move p p′; lgl move p′ p′′K =⇒ (p′′, p) ∈ ordering p0

Jst start p0; p∈ st reachable p0; turn p = WhiteK =⇒ ∃ p′. st wht move p p′

Jst start p0; p ∈ st reachable p0; turn p = White; st wht move p p′K =⇒
¬ stalemate p′

3 KRK Chess Endgame and Bratko-style Strategy

In this section we describe our formalization of KRK chess endgame. We give
a very brief description of the specialization of chess rules for this case and of
Bratko-style strategy for the KRK endgame (we denote it by BTK) [10].

KRK chess endgame. Although the KRK endgame follows the general chess
rules introduced in the previous section, due to the specific nature of the game
with just three pieces on the board, most notions can be characterized by much
simpler conditions. Therefore, all general chess definitions are adapted to the
KRK case and are reformulated through alternative definitions. Each such def-
inition is proved to be just a specific instance of its corresponding general chess
definition, and later used to simplify the correctness proofs. Since all following
definitions are based on KRK-specific definitions used in the URSA specification
[10], our work shows that the URSA specification follows from general chess rules.

Since there are only three pieces on the board, each position can be repre-
sented by the following simple data-structure.

record KRKPosition =

WK ::"square" (* position of white king *)

BK ::"square" (* position of black king *)

WRopt ::"square option" (* position of white rook (None if captured) *)

WhiteTurn ::"bool" (* Is white on turn? *)

Note that the option type is used only for the rook position, as kings must always
be present on the board3. The following abbreviations are introduced.

BlackTurn p ←→ ¬ WhiteTurn p,
WR p = the(WRopt p), WRcapt p ←→ WRopt p = None

The KRKPosition record interprets the Position locale, as all required com-
ponents can be easily implemented.

KRK.pos inv p ←→ WK p 6= BK p ∧ WRopt p 6= Some(WK p) ∧ WRopt p 6= Some(BK p)

KRK.to move p = (if WhiteTurn p then White else Black)

KRK.on sq p sq = (if WK p = sq then Some (White, King)

else if BK p = sq then Some (Black, King)

else if WRopt p = Some sq then Some (White, Rook)

else None)"

3 This is only implicitly stated in the FIDE chess rules, as positions are defined to be
legal only if they are reachable from the starting state where both kings are present,
and kings cannot be captured. In our KRK formalization, the condition that both
kings are present is implicitly imposed by the position representation.

Once the basic functions are interpreted, instances of all general definitions
(e.g., legal positions, legal moves, stalemate, checkmate) for the KRK case are
available. However, as we said, most of them are significantly simplified and
reformulated, this time without quantifiers, so simpler reasoning methods can
be used to reason about their properties. For example, requirement that all pieces
are within the board bounds is defined in the following way (compare this with
the original definition that uses the universal quantifier).

KRK.all on board p ←→
on board (WK p) ∧ on board (BK p) ∧ (¬ WRcapt p −→ on board (WR p))

It is proved that this simplified KRK.all on board p definition is equivalent to
the original all on board p definition instantiated by the KRKPosition type
and its corresponding basic function definitions (lemma "all on board p ←→
KRK.all on board p"). Such proofs were not too hard, but Isabelle/HOL could
not do them automatically (due to the rich language and the need of reasoning
about arbitrarily quantified statements, the record type, tuples, etc).

The legality of positions can be reduced to requiring that all pieces are on
different squares, that kings are not next to each other, and that if white is
on turn, then the rook does not attack the black king (in KRK endgames, no
diagonal lines but only horizontal and vertical lines need to be considered).

sq btw hv (f1,r1) (f, r) (f2, r2) ←→
(f1 = f ∧ f = f2 ∧ btw r1 r r2) ∨ (r1 = r ∧ r = r2 ∧ btw f1 f f2)

KRK.WR attacks BK p ←→
¬ WRcapt p ∧ rook scope (WR p) (BK p) ∧ ¬ sq btw hv (WR p) (WK p) (BK p)

KRK.kings separated p ←→ ¬ king scope (WK p) (BK p)

KRK.lgl pos p ←→ KRK.pos inv p ∧ KRK.all on board p ∧
KRK.kings separated p ∧ (WhiteTurn p −→ ¬ KRK.WR attacks BK p)"

Again, it is formally shown that this simplified definition of KRK.lgl pos p is
equivalent to the original lgl pos p definition instantiated to the KRK case
(lemma "lgl pos p ←→ KRK.lgl pos p").

Moves are defined as functions that modify the record representing the posi-
tion. Move of the black king is the most complicated (as it can capture a rook).

KRK.moveBK p sq = (let p′ = p (| BK := sq, WhiteTurn := True |)
in if WR p = sq then p′ (| WRopt := None |) else p′)

With these available, legal moves can be easily characterized. For example, a
legal move of the black king can be characterized as follows.

KRK.BK attacks sq p sq ←→ king scope (BK p) sq

KRK.lgl move BK p1 p2 ←→ KRK.lgl pos p1 ∧ BlackTurn p1 ∧ KRK.lgl pos p2 ∧
KRK.BK attacks sq p1 (BK p2) ∧ p2 = KRK.moveBK p1 (WK p2)

Legal moves of two other pieces are characterized similarly. It is easily proved
that all legal moves of black pieces are legal moves of the black king and all legal
moves of white pieces are legal moves of either the white king or the white rook.

Bratko-style KRK Strategy Definition. Bratko’s strategy can be outlined as
follows. Try to mate in two moves. If that is not possible, then try to squeeze
the room — the area to which the black king is confined by the white rook.
Otherwise, try to approach the black king, to help the rook in squeezing (the
approach is towards the critical square — a square adjacent to the rook in the
direction of the black king). Otherwise, try to maintain the present achievements
in the sense of squeeze and approach (i.e. make a waiting move). Otherwise, try
to obtain a position such that the rook divides the two kings either vertically or
horizontally. The strategy has a number of hidden details (its detailed description
consumes more than a full page [10]) and that shows that it is very difficult to
have a concise winning strategy (not to mention optimal strategy) even for a
simple endgame such as KRK.

0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0J0Z0Z
Z0Z0Z0Z0
0Z0Z0S0Z
Z0Z0Z0Z0
0ZkZ0Z0Z
Z0Z0Z0Z0

Fig. 1. Room and
critical square

One of the central notions in the strategy is room (Fig-
ure 1). Following the strategy, white iteratively squeezes
the black king and reduces the room, until black can be
mated. The room space is always rectangular (e.g., of
dimension f × r). Originally, room was measured by its
area. However, we noticed that instead of the area, half-
perimeter (f + r) can be used, which has equivalent key
properties but it does not use multiplication and the arith-
metic constraints remain linear. Critical square and room
are formalized as follows.

towards a b = (if a = b then a else if a > b then a - 1 else a + 1)

BTK.critical sq p = (let (Rf, Rr) = WR p; (kf, kr) = BK p

in (towards Rf kf, towards Rr kr)

BTK.room p = (let (Rf,Rr) = WR p; (kf,kr) = BK p

in (if Rf = kf ∨ Rr = kr then F + R - 1

else let f = if Rf > kf then Rf else F - 1 - Rf;

r = if Rr > kr then Rr else R - 1 - Rr

in f + r))

Note that when the black king and the white rook are in line, the black king is
not confined, so the room takes the maximal value (F + R - 1).

After some initial moves, an invariant is established that the white rook is
not exposed (its king can always approach and protect it, without having to
move it) and that it divides two kings (either horizontally or vertically) or in
some special cases that they form an L-shaped pattern (kings are in the same
row (column), at distance 2, and the rook and the white king are in the same
column (row) at distance 1). These notions are formalized as follows.

BTK.WR exposed p ←→
(WhiteTurn p ∧ cdist (WK p) (WR p) > cdist (BK p) (WR p) + 1) ∨
(BlackTurn p ∧ cdist (WK p) (WR p) > cdist (BK p) (WR p))

BTK.WR divides p ←→ (let (Rf,Rr) = WR p;(kf,kr) = BK p;(Kf,Kr) = WK p

in (btw kf Rf Kf ∨ btw kr Rr Kr))

BTK.Lpattern p ←→ (let (Rf,Rr) = WR p; (kf,kr) = BK p; (Kf,Kr) = WK p

in (Kr = kr ∧ |Kf − kf | = 2 ∧ Rf = Kf ∧ |Rr −Kr| = 1) ∨
(Kf = kf ∧ |Kr − kr| = 2 ∧ Rr = Kr ∧ |Rf −Kf | = 1)

The strategy uses several kinds of moves that are applied in a fixed order (if
one kind of move is not applicable, then the next one is tried, and so on). For
example, one kind of move is the ImmediateMate and it is applicable if white
can mate in a single move. The Squeeze is applicable if white can reduce the
room, while keeping the rook not exposed, dividing the two kings, and avoiding
a stalemate position for black. These relations are formalized as follows.

BTK.immediate mate cond p ←→ KRK.BK cannot move p ∧ KRK.WR attacks BK p

BTK.squeeze cond p p′ ←→
BTK.room p′ < BTK.room p ∧ BTK.WR divides p′ ∧
¬ BTK.WR exposed p′ ∧ (KRK.BK cannot move p′ −→ KRK.WR attacks BK p′)

In order to apply some rule, its condition must hold but, in addition, no
previous moves can be applicable, so their conditions must not hold for any
legal move of white. This requires to universally quantify over all possible moves
of white pieces. We introduce the function kings square (f, r) k that for
values k between 1 and 8, gives coordinates of 8 squares that surround the
given central square (f, r). Similarly, the function rooks square (f, r) k for
values k between 1 and F + R gives all squares that are in line with the rook (first
horizontally, and then vertically). Then we introduce bounded quantification
(that is unfolded in the proofs to stay within the quantifier-free fragment) and
predicates that encode that a certain kind of move cannot be applied. We show
this only for the ImmediateMate, as other moves follow a similar pattern.

all n P n ←→ ∀ i. 1 ≤ i ∧ i ≤ n −→ P i

no mate WK p ←→ all n 8 (λ k. let sq = kings square (WK p) k in

KRK.WK can move to p sq −→ ¬ BTK.immediate mate cond (KRK.moveWK p sq))

no mate WR p ←→ all n (F + R) (λ k. let sq = rooks square (WR p) k in

KRK.WR can move to p sq −→ ¬ BTK.immediate mate cond (KRK.moveWR p sq))

no immediate mate p ←→ no mate WK p ∧ no mate WR p

Note that a mate cannot occur as a consequence of a white king’s move.
Finally, we introduce the relation BTK.st wht move p p′ m, encoding that a

position p′ is reached from a position p after a strategy move of a kind m.

MoveKind = ImmediateMate | ReadyToMate | Squeeze | ApproachDiag |

ApproachNonDiag | KeepRoomDiag | KeepRoomNonDiag | RookHome | RookSafe

BTK.st wht move p p′ m ←→
(if m = ImmediateMate then

KRK.lgl move WR p p′ ∧ BTK.immediate mate cond p′

else

no immediate mate p ∧
if m = ReadyToMate then

KRK.legal move white p p′ ∧ BTK.ready to mate cond p′

else

no ready to mate p ∧
...

if m = RookSafe then

KRK.lgl move WR p p′ ∧ BTK.rook safe cond p p′

else False)

Executable Specification. The relational specification BTK.st wht move p p′ m
is not executable. In many cases, for a given position p there are several possible
values of p′ and m that satisfy the previous relation. We defined a determinis-
tic, executable function (p′, m) = BTK.st wht move fun p that returns a new
position and a move type corresponding to the selected strategy move. In most
cases this function iterates through all legal moves of white pieces (in some fixed
order) until it finds a first move that satisfies the relational specification. Since
the iteration order is fixed, the function will be deterministic, but in positions
that allow several applicable moves, the choice is made rather arbitrarily (as
the iteration order is chosen rather arbitrarily). An interesting exception is the
squeeze move. To make the strategy more efficient, the optimal squeeze (the one
that confines the black king the most) is always played (if there are several such
moves, the first one found in the iterating process is used).

4 Correctness Proofs for Bratko-style Strategy

In this section we describe central correctness arguments for the strategy. All
major proof steps were done automatically, by formulating the goals in LIA and
applying the SMT solver.

Linear Arithmetic Formulation. The quantifier-free fragment of the theory
of linear integer arithmetic (LIA) is very convenient for expressing our goals, so
we formulated all our definitions in the language of LIA. This can be seen as
an illustration how to prepare a problem (not only chess-related) for solving by
automated solvers. Our definitions on this layer usually closely follow previously
given definitions for the KRK case and Bratko’s (BTK) strategy. However, in
our LIA definitions, we never use quantifiers and don’t use the record, product,
nor the option type that were present on the KRK layer, but only the pure
language of LIA. All KRK positions are represented in an unpacked form and
functions receive six integers (usually denoted as Kf , Kr for white king file and
rank coordinates, kf , kr for black king, and Rf , Rr for white rook) instead of
a record that collects them. Note that all the following definitions assume that
the rook is present on the board, since they are applied only in such situations.
Here are some examples.

LIA.on board sqf sqr ←→ 0 ≤ sqf ∧ sqf < F ∧ 0 ≤ sqr ∧ sqr < R

LIA.all on board Kf Kr kf kr Rf Rr ←→
LIA.on board Kf Kr ∧ LIA.on board kf kr ∧ LIA.on board Rf Rr

LIA.king scope sf1 s
r
1 s

f
2 s

r
2 ←→ |sf1 − s

f
2 | ≤1 ∧ |sr1 − sr2| ≤1 ∧ (sf1 6= sf2 ∨ sr1 6= sr2)

LIA.pos inv Kf Kr kf kr Rf Rr ←→
(Kf 6=kf ∨ Kr 6=kr) ∧ (Rf 6=Kf ∨ Rr 6=Kr) ∧ (Rf 6=kf ∨ Rr 6=kr)

It is shown that these definitions are equivalent to the KRK ones (under the
assumption that the rook is not captured, and that coordinates of pieces are
unpacked from the record). For example:

lemma

assumes "WK p = (Kf,Kr)" "BK p = (kf,kr)" "WR p = (Rf,Rr)" "¬ WRcapt p"

shows "KRK.pos inv p ←→ LIA.pos inv Kf Kr kf kr Rf Rr"

All KRK definitions and all BTK strategy definitions have their LIA counter-
parts. The connection between them is quite obvious, so the proofs of equivalence
are rather trivial and are proved by Isabelle’s native automated tactics. In the
following proofs, translation from HOL terms to LIA terms is done manually,
but could be automated by implementing a suitable tactic.

Central Theorems. In this section we present our proof that BTK strategy is
winning for white i.e., that it interprets the WinningStrategyOrdering locale.
First, the strategy relation and the invariant are defined.

BTK.st wht move p p′ ←→ (∃ m. BTK.st wht move p p′ m)

BTK.st inv p ←→ ¬ WRcapt p

Before giving proofs, we introduce some auxiliary notions. We are often going
to consider full moves (a move of white that follows the strategy, followed by
any legal move of the black king)4.

BTK.st full move p1 p2 ←→ ∃ p′1. BTK.st wht move p1 p
′
1 ∧ KRK.lgl move BK p′1 p2

For positions p1 and p2 and a set of strategy move types M , we define the
following relations (white is allowed to make a move only if its kind is in M).

BTK.st wht move M p p′ ←→ (∃ m ∈M. BTK.st wht move p p′ m)

BTK.st full move M p1 p2 ←→ ∃ p′1. BTK.st wht move M p1 p
′
1 ∧

KRK.lgl move BK p′1 p2

Next, we show that the BTK.st wht move p p′ defines a correct strategy, i.e.,
that it interprets the Strategy locale (that all moves are legal, and that the
invariant is maintained throughout each strategy play). The following theorem
guarantees that every move made by the strategy is legal.

theorem assumes "BTK.st wht move p1 p2"
shows "KRK.lgl move WK p1 p2 ∨ KRK.lgl move WR p1 p2"

This is trivial to prove, since we explicitly require that a legal move is made in
all cases of the definition of BTK.st wht move p1 p2 m.

It is obvious that a move of white preserves the invariant (white rook remains
not captured). The following theorem guarantees that the invariant also remains
preserved after any subsequent legal move of black.

theorem assumes "¬ WRcapt p1" "BTK.st full move p1 p2"
shows "¬ WRcapt p2"

The proof goes as follows. White could not have played the ImmediateMate

move, since black has made the move. In all other case, except the ReadyToMate

move, the condition ¬ BTK.WR exposed p is imposed, and it guarantees that the
rook cannot be captured. The ReadyToMate case is the only non-trivial case and
we encode the problem in LIA and employ SMT solvers to discharge the goal.

Next, we prove that the strategy is winning i.e., that it interprets the Winning-
StrategyOrdering locale (that the strategy is always applicable, that it never
leads into stalemate, and that there is a well founded ordering consistent with
full strategy moves). The next theorem shows that play can always be continued
i.e., that white can always make a strategy move.
4 In the chess literature, half-move is sometimes called ply, and full-move move.

theorem assumes "WhiteTurn p1" "¬ WRcapt p1" "KRK.lgl pos p1"
shows "∃ p2. BTK.st wht move p1 p2"

The proof is based on the following lemma, that guarantees that either Squeeze,
RookHome, or RookSafe move are always applicable. The lemma is again proved
automatically, by rewriting it into LIA and employing SMT solver.

lemma assumes "WhiteTurn p" "¬ WRcapt p" "KRK.lgl pos p"
shows "¬ BTK.no squeeze p ∨ ¬ BTK.no rook safe p ∨ ¬ BTK.no rook home p"

The following theorem shows that black is never in a stalemate.

theorem assumes "¬ WRcapt p1" "BTK.st wht move p1 p2"
shows "¬ KRK.stalemate p2"

This is also proved by analyzing different moves. After the ImmediateMate, black
is mated and that is not a stalemate. All other moves, except ReadyToMate, by
their definition require that stalemate did not occur, so they are trivial. The only
complicated case is ReadyToMate, so we again use SMT solver to discharge it.

Finally, we prove termination. We show that the relation R = {(p2, p1).
p1 ∈ BTK.st reachable p0 ∧ BTK.st full move p1 p2} is well-founded, for a
legal initial position p0. If it would not be well-founded, then there would be a
non-empty set with no minimal element i.e., there would be a non-empty set Q
such that a strategy play can always be extended by a strategy move of white,
followed by a move of black:

∀ p ∈ Q. p ∈ BTK.st reachable p0 ∧ (∃ p′ ∈ Q. BTK.st full move p p′)

Since in such infinite play, white must not make ImmediateMate and ReadyToMate

move, as otherwise, the play would finish in a checkmate position, the following
is implied (M denotes a set of two mate moves, andM denotes its complement).

∀ p ∈ Q. p ∈ BTK.st reachable p0 ∧ (∃ p′ ∈ Q. BTK.st full moveM p p′)

We show that this is a contradiction. The first observation is that the RookHome

and RookSafe moves can be played only within the first three moves of a strategy
play. This is proved by induction, using the following theorem that we proved
automatically using LIA and SMT solvers.

theorem assumes "¬ WRcapt p1"
"BTK.st full move p1 p2" "BTK.st full move p2 p3"
"BTK.st full move p3 p4" "BTK.st wht move p4 p

′
4 m"

shows "m 6= RookHome" "m 6= RookSafe"

Therefore, starting from some position p′0 ∈ Q (a position reached after three
moves), all moves of white in our infinite strategy play are basic moves (B denotes
the set of basic moves: Squeeze, Approach, or KeepRoom).

∀ p ∈ BTK.st reachable p′0 ∩ Q. (∃ p′ ∈ Q. BTK.st full move B p p′)

Next we proved that there is a position pm that satisfies the following condition.

pm ∈ BTK.st reachable p′0 ∩ Q ∧ BTK.room pm ≤ 3 ∧ ¬ BTK.WR exposed pm

To prove this, we use the following lemma, stating that when started from a
situation where the rook is exposed or the room is grater than 3, after three
strategy basic moves, the rook is not exposed anymore and either the room
decreased, or it stayed the same, but the Manhattan distance to the critical
square decreased. Again, this lemma is proved automatically, by expressing it in
language of LIA and employing SMT solver.

theorem assumes "¬ WRcapt p1" "BTK.WR exposed p1 ∨ BTK.room p1 > 3"

"BTK.st full move B p1 p2" "BTK.st full move B p2 p3"
"BTK.st full move B p3 p4"

shows "(BTK.WR exposed p4, BTK.room p4, BTK.mdist cs p4) <

(BTK.WR exposed p1, BTK.room p1, BTK.mdist cs p1)"

Note that the last conclusion is expressed as lexicographic comparison between
the ordered triples that contain a bool (BTK.WR exposed p) and two integers
(BTK.room p and BTK.mdist cs p). The Boolean value False is considered less
than True, and integers are ordered in the standard way. Since these integers are
non-negative for all legal positions, this lexicographic ordering is well-founded.
Then we consider the following relation.

R’ = {(p2, p1). ¬ WRcapt p1 ∧ (BTK.WR exposed p1 ∨ BTK.room p1 > 3) ∧
BTK.st full move B p1 p2}

By the previous theorem, the third power of this relation is a subset of the
lexicographic ordering of triples that was well-founded, so the relation R′ itself is
well-founded. Then, every non-empty set has a minimal element in this relation,
so there is an element pm such that the following holds.

pm ∈ BTK.st reachable p′0 ∩ Q
∀ p. (p, pm) ∈ R′ −→ p /∈ BTK.st reachable p′0 ∩ Q

As we already noted, the play from BTK.st reachable p′0 ∩ Q can always
be extended by a strategy basic move, followed by a move of the black king,
i.e., there is a position p′m ∈ Q such that BTK.st full move B pm p′m. Then,
p′m would also be in BTK.st reachable p′0 ∩ Q, so (p′m, pm) /∈ R′. Since it
holds that ¬ WRcapt pm and BTK.st full move B pm p′m, it must not hold that
BTK.WR exposed p1 ∨ BTK.room p1 > 3, so pm is the required position, satisfy-
ing ¬ BTK.WR exposed pm ∧ BTK.room pm ≤ 3. From such position, the fifth
move by white will be either a ImmediateMate or a ReadyToMate. This holds by
the following theorem (again, proved automatically, using LIA and SMT solver).

theorem assumes "¬ WRcapt p0" "BTK.room p0 ≤ 3" "¬ BTK.WR exposed p0"
"BTK.st full move B p0 p1" "BTK.st full move B p1 p2"
"BTK.st full move B p2 p3" "BTK.st full move B p3 p4"
"BTK.st wht move p4 p

′
4 m"

shows "m ∈ M"

Since pm ∈ BTK.st reachable p′0 ∩ Q, white is on turn and the play can be
infinitely extended by basic moves. However, by the previous theorem, the fifth
move of white must be a mating move, giving the final contradiction.

5 Related Work

The presented formalization is, as said, closely related to the one based on con-
straint solving [10]. Still, the present work is a step forward, since it includes
a formal development of relevant chess rules within the proof assistant and all
proofs are trustworthy in a stronger sense. Not only that this work glues together
conjectures checked earlier by the constraint solver, it also revealed some minor
deficiencies (e.g., imprecise definition of legal moves) in the earlier formalization.

Although properties of two-player board games are typically explored us-
ing brute-force analyses, other approaches exist, similar to the constraint solv-
ing based one. For instance, binary decision diagrams were applied for game-
theoretical analysis of a number of games [5]. Again, this approach cannot pro-
vide results that can be considered trustworthy in the sense of proof assistants.
There is only a limited literature on using interactive theorem proving for ana-
lyzing two-player board games. A retrograde chess analysis has been done within
Coq, but it does not consider chess strategies [11]. Hurd and Haworth constructed
large, formally verified endgame databases, within the HOL system [8]. Their
work is focused on endgame tables and it is extremely difficult (if not impossible)
to extract some concise strategy descriptions and high-level insights from these
tables, so we addressed a different problem and in a different way.

Before using Isabelle/SMT, we formalized the strategy within Coq [12]. How-
ever, neither Omega, a built-in solver for quantifier-free formulae in LIA, nor a far
more efficient Micromega and corresponding tactics for solving goals over ordered
rings (including LIA), were efficient enough. SMTCoq [1] is an external Coq tool
that checks proof witnesses coming from external SAT and SMT solvers (zChaff
and veriT). Coq implements constructive logic, while veriT reasons classically.
SMTCoq was designed to work with type bool (which is decidable in Coq) but
not with type Prop which is natural type for propositions in Coq. Construction
of complex theories over type bool in Coq can be quite inconvenient and has
many pitfalls. There are plans for further improvement of SMTCoq.

6 Conclusions and Further Work

In the presented work, chess — a typical AI domain — has been used as an il-
lustration for showing that the state-of-the-art theorem proving technology has
reached the stage when very complex combinatorial conjectures can be proved in
a trusted way, with only a small human effort. Our key point is that this is pos-
sible thanks to synergy of very expressible interactive provers and very powerful
automated provers (SMT solvers in our case). The considered conjectures push
the provers up to the limits5 and while Isabelle/SMT interface can be further
improved (e.g., proof checking time could be reduced), our experience with it

5 The largest SMT formula in the proof has more than 67,000 atoms. Proofs were
checked in around 8 CPU minutes on a multiprocessor 1.9GHz machine with 2GB
RAM per CPU when SMT solvers are used in the oracle mode and when SMT proof
reconstruction was not performed. SMT proof reconstruction is the slowest part of

can be seen as a success story. Our second point is that the presented work can
be seen as an exercise not only in automation, but also in suitable formalization
of non-trivial combinatorial problems. Namely, computer theorem provers are
powerful tools in constructing and checking proofs, but they only work modulo
the given definitions. The only way to check definitions is by human inspection,
and one must be extremely careful when doing this step. Reducing everything
to a small set of basic definitions (as we reduced specific KRK definitions to the
basic chess rules) is an important step in ensuring soundness.

For future work, we are planning to analyse different generalizations of the
presented central theorem. For example, unlike approaches based on SAT or
endgame tables, our approach is not enumerative in its nature and can be used
for arbitrary board sizes. We will also use a similar approach for proving other
related conjectures in chess and other two-player intellectual games.

Acknowledgments. The authors are grateful to Sascha Böhme and Jasmin Chris-
tian Blanchette for their assistance in using SMT solvers from Isabelle/HOL and
to Chantal Keller for her assistance in using SMT solvers from Coq.

References

1. M. Armand, G. Faure, B. Grégoire, C. Keller, L. Théry, and B. Werner. A Modular
Integration of SAT/SMT Solvers to Coq through Proof Witnesses. In Certified
Programs and Proofs, volume 7086 of LNCS. Springer, 2011.

2. C. Ballarin. Interpretation of locales in isabelle: Theories and proof contexts. In
MKM, 2006.

3. S. Böhme and T. Weber. Fast LCF-style proof reconstruction for Z3. In Interactive
Theorem Proving, volume 6172 of LNCS. Springer, 2010.

4. I. Bratko. Proving correctness of strategies in the AL1 assertional language. In-
formation Processing Letters, 7(5), 1978.

5. S. Edelkamp. Symbolic Exploration in Two-Player Games: Preliminary Results.
In AIPS-02 Workshop on Planning via Model-Checking, 2002.

6. FIDE. The FIDE Handbook, chapter E.I. The Laws of Chess, 2004. Available for
download from the FIDE website.

7. J. Hurd. Formal verification of chess endgame databases. In Theorem Proving in
Higher Order Logics: Emerging Trends, Oxford University CLR Report, 2005.

8. J. Hurd and G. Haworth. Data assurance in opaque computations. In Advances
in Computer Games, volume 6048 of LNCS. Springer, 2010.

9. P. Janičić. URSA: A System for Uniform Reduction to SAT. Logical Methods in
Computer Science, 8(3:30), 2012.

10. M. Maliković and P. Janičić. Proving Correctness of a KRK Chess Endgame
Strategy by SAT-Based Constraint Solving. ICGA Journal, 36(2), 2013.

11. M. Maliković and M. Čubrilo. What were the last moves? International Review
on Computers and Software, 5(1), 2010.

12. M. Maliković, M. Čubrilo, and P. Janičić. Formalization of a Strategy for the KRK
Chess Endgame. In Conference on Information and Intelligent Systems, 2012.

13. K. Thompson. Retrograde analysis of certain endgames. ICCA Journal, 9(3), 1986.

proof-checking, but it can be done in a quite reasonable time of 29 CPU minutes.
The whole formalization has around 12,000 lines of Isabelle/Isar code.

