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Abstract. We present a final status of all problems from Wernick’s list
of triangle construction problems published in 1982 and with a number of
unknown status until recently. Our results were obtained by a computer-
based system for checking constructibility. We also developed a system
for finding elegant constructions for solvable problems and for verifying
their correctness. These systems helped in resolving problems open for
decades, showing the power of modern computer systems in areas such
as symbolic computation, problem solving, and theorem proving.

1 Introduction

In 1982, Wernick presented a list of straightedge and compass construction prob-
lems [23] (many of these problems were considered along the centuries, before
this list was compiled). Each of them is a triangle location problem: the task is
to construct a triangle ABC starting from three located points selected from the
following set of sixteen characteristic points:

– A, B, C, O: three vertices and circumcenter;
– Ma, Mb, Mc, G: the side midpoints and centroid;
– Ha, Hb, Hc, H: three feet of altitudes and orthocenter;
– Ta, Tb, Tc, I: three feet of the internal angles bisectors and incenter.

There are 560 triples of the above points, but Wernick’s list consists only
of 139 significantly different non-trivial problems. The triple {A,B,C} is trivial
and, for instance, the problems {A,B,Ma}, {A,B,Mb}, {B,C,Mb}, {B,C,Mc},
{A,C,Ma}, and {A,C,Mc} are considered to be symmetric (i.e., analogous).
Wernick divided the problems into four categories:

Redundant problems: if there is a point in the given triple such that it is
uniquely determined and constructible from the remaining two points, we
say that the problem is redundant (and we denote it by R). For instance,
the triple {A,B,Mc} is redundant — given points A and B, the point Mc

is uniquely determined.
Locus dependent problems: if there exists the required triangle ABC (not

a way to construct it, but the triangle itself) only for given points meeting
certain constraints, then we say that the problem is locus dependent (and
we denote it by L). All such problems in Wernick’s list have infinitely many
solutions. For instance, for the problem {A,B,O}, the point O has to belong
to the perpendicular bisector of AB, otherwise the corresponding triangle
ABC does not exist.



Solvable problems: if there is a construction of the required triangle ABC
(whenever it exists, while it does not exist only in some special cases) starting
with the given points, we say that the problem is solvable or constructible
(and we denote it by S).

Unsolvable problems: if for some given points the required triangle ABC
exists, but it is not constructible, then we say that the problem is unsolvable
or unconstructible (and we denote it by U).

1. A, B, O L 36. A, Mb, Tc S 71. O, G, H R 106. Ma, Hb, Tc U [18]
2. A, B, Ma S 37. A, Mb, I S 72. O, G, Ta U [18] 107. Ma, Hb, I U [18]
3. A, B, Mc R 38. A, G, Ha L 73. O, G, I U [18] 108. Ma, H, Ta S [20]
4. A, B, G S 39. A, G, Hb S 74. O, Ha, Hb U [18] 109. Ma, H, Tb U [21]
5. A, B, Ha L 40. A, G, H S 75. O, Ha, H S 110. Ma, H, I U [21]
6. A, B, Hc L 41. A, G, Ta S 76. O, Ha, Ta S 111. Ma, Ta, Tb U [21]
7. A, B, H S 42. A, G, Tb U [18] 77. O, Ha, Tb U [20] 112. Ma, Ta, I S
8. A, B, Ta S 43. A, G, I S [18] 78. O, Ha, I U [20] 113. Ma, Tb, Tc U [20]
9. A, B, Tc L 44. A, Ha, Hb S 79. O, H, Ta U [18] 114. Ma, Tb, I U [18]
10. A, B, I S 45. A, Ha, H L 80. O, H, I U [18] 115. G, Ha, Hb U [18]
11. A, O, Ma S 46. A, Ha, Ta L 81. O, Ta, Tb U [20] 116. G, Ha, H S
12. A, O, Mb L 47. A, Ha, Tb S 82. O, Ta, I S [18] 117. G, Ha, Ta S
13. A, O, G S 48. A, Ha, I S 83. Ma, Mb, Mc S 118. G, Ha, Tb U [20]
14. A, O, Ha S 49. A, Hb, Hc S 84. Ma, Mb, G S 119. G, Ha, I S [20]
15. A, O, Hb S 50. A, Hb, H L 85. Ma, Mb, Ha S 120. G, H, Ta U [18]
16. A, O, H S 51. A, Hb, Ta S 86. Ma, Mb, Hc S 121. G, H, I U [18]
17. A, O, Ta S 52. A, Hb, Tb L 87. Ma, Mb, H S [18] 122. G, Ta, Tb U [20]
18. A, O, Tb S 53. A, Hb, Tc S 88. Ma, Mb, Ta U [18] 123. G, Ta, I U [20]
19. A, O, I S 54. A, Hb, I S 89. Ma, Mb, Tc U [18] 124. Ha, Hb, Hc S
20. A, Ma, Mb S 55. A, H, Ta S 90. Ma, Mb, I U [21] 125. Ha, Hb, H S
21. A, Ma, G R 56. A, H, Tb U [18] 91. Ma, G, Ha L 126. Ha, Hb, Ta S
22. A, Ma, Ha L 57. A, H, I S [18] 92. Ma, G, Hb S 127. Ha, Hb, Tc U [20]
23. A, Ma, Hb S 58. A, Ta, Tb S [18] 93. Ma, G, H S 128. Ha, Hb, I U [20]
24. A, Ma, H S 59. A, Ta, I L 94. Ma, G, Ta S 129. Ha, H, Ta L
25. A, Ma, Ta S 60. A, Tb, Tc S 95. Ma, G, Tb U [18] 130. Ha, H, Tb U [18]
26. A, Ma, Tb U [18] 61. A, Tb, I S 96. Ma, G, I S [18] 131. Ha, H, I S [18]
27. A, Ma, I S [18] 62. O, Ma, Mb S 97. Ma, Ha, Hb S 132. Ha, Ta, Tb U [20]
28. A, Mb, Mc S 63. O, Ma, G S 98. Ma, Ha, H L 133. Ha, Ta, I S
29. A, Mb, G S 64. O, Ma, Ha L 99. Ma, Ha, Ta L 134. Ha, Tb, Tc U [20]
30. A, Mb, Ha L 65. O, Ma, Hb S 100. Ma, Ha, Tb U [18] 135. Ha, Tb, I U [20]
31. A, Mb, Hb L 66. O, Ma, H S 101. Ma, Ha, I S 136. H, Ta, Tb U [20]
32. A, Mb, Hc L 67. O, Ma, Ta L 102. Ma, Hb, Hc L 137. H, Ta, I U [20]
33. A, Mb, H S 68. O, Ma, Tb U [18] 103. Ma, Hb, H S 138. Ta, Tb, Tc U [22]
34. A, Mb, Ta S 69. O, Ma, I S 104. Ma, Hb, Ta S 139. Ta, Tb, I S
35. A, Mb, Tb L 70. O, G, Ha S 105. Ma, Hb, Tb S

Table 1: The definite status of all Wernick’s problems

In the original list, the problem 102 was erroneously marked S instead of L
[18] and the problem 108 was erroneously marked U instead of S [20]. Wernick’s
list left 41 problem unresolved/unclassified, but the update from 1996 [18] left
only 20 of them. In the meanwhile, the problems 90, 109, 110, 111 [21], and 138
[22] were proved to be unsolvable. We are not aware of published solutions for
remaining 15 unsolved problems (although there are indications that eight more
were resolved in the meanwhile [25]). Some of the problems were additionally



considered for simpler solutions, like the problem 43 [1, 5], the problem 57 [24],
and the problem 58 [4, 21]. Solutions for 59 solvable problems can be found on
the Internet [21]. The status for all these problems was determined by ad-hoc
attempts, with no systematic solving procedures or computer support involved.

Recently, we developed computer-based systems for checking constructibility
for all problems from Wernick’s list [20] and for finding constructions for solvable
problems [16, 17, 13]. Thanks to the former system, we were able to fill-in all
remaining slots in Wernick’s list and now the status for all 139 problems is
known. They are given in Table 1: there are 74 S problems, 39 U problems, 3
R problems, and 23 L problems. The problems are associated with references to
the papers resolving their status (for the problems with no references, the status
was given in the original Wernick’s paper). More on these two systems is given
in the following two sections.

2 Computer-Assisted Resolving of Unconstructible
Problems

Our first method relies on algebraization of geometric constructions and Galois
results about straightedge and compass constructions of numbers. Let us first
recall some classical results.

Let F be a field extension of Q, and G a field extension of F . A number in
G is straightedge and compass constructible in F if and only if it is equal to an
expression using only numbers in F , arithmetic operations and square radicals.
Such a number is algebraic in F , and its degree over F is a power of two. This
result is known as Wantzel’s result and is often used to prove that a number is
not straightedge and compass constructible (for instance, in the demonstration
of the impossibility of angle trisection using only straightedge and compass). The
conjecture which states the opposite direction is generally false. This is why we
also use a stronger result which is a consequence of Galois theory: an algebraic
number on F is constructible if and only if the splitting field of its minimal
polynomial is an extension of degree 2m for some m over F . This is equivalent
to the fact that the cardinal of the Galois group of the minimal polynomial is
also 2m.

A point is straightedge and compass constructible from a set B of points if its
coordinates are constructible on the extension of Q containing the coordinates of
the points of B. It is obvious that one of the points from B can have coordinates
(0, 0), and another one can have coordinates (k, 0) where k is a given number.
With Wernick’s corpus, B contains three points, two of them can be fixed this
way, whereas the third one must have free coordinates (a, b) in order to consider
the generic case.

Let us also give a more precise meaning of the labels annotating the prob-
lems in Wernick’s corpus. A problem has status S or U if it has solutions in
the Euclidean plane, regardless constructibility using straightedge and compass:
it has label S if it is straightedge and compass constructible, and label U (un-
constructible) otherwise. The labels R and L correspond to over-constrained



problems and are easy to check by using algebraic tools. We will not discuss this
matter further within this text.

The general idea of the method consists of the following steps:

– translate the considered problem into a polynomial system,

– use regular chains to obtain a disjunction of irreducible polynomial systems,

– use Wantzel’s result or Galois theory to prove constructibility or uncon-
structibility.

We made this pipeline automatic through an implementation in Maple [11] which
offers several powerful tools like the regular chains and the computation of Galois
group of a polynomial up to degree 9.

Actually, this idea is used in two different ways:

– First, we try to prove that the problem is not constructible: for this, we
consider a witness, that is an example of triangle which is a solution of an
instance of the problem with rational coordinates for the given points and we
apply the method to this example. If this example is not constructible, then
the problem is not solvable by straightedge and compass. We implemented
a routine for automatically producing witness candidates and checking the
whole list for unconstructibility.

– If the first method fails to prove the unconstructibility of the problem (for
several witness candidates), we apply the method on the parametric problem
which represents the general case. The calculi are much harder but com-
plete: if each Galois group has a power of 2 as order, then the problem is
constructible. And then, it is theoretically possible to extract a construction
[2, 8], but it is very difficult to obtain and even for the simplest problems,
the generic construction is geometrically unappealing. See, for instance, the
problem 108 below.

Example 1. We prove the unconstructibility of the problem 122: {G, Ta, Tb}
by choosing the coordinates Tb(0, 0), Ta(4, 0) and G(2, 1). Each of these points
gives rise to two polynomial equations involving coordinates of points A(xA, yA),
B(xB , yB), and C(xC , yC). The triangularization process for this system of 6
equations gives two systems containing the following disqualifying equations:

P (yC) = y4C − 6y3C − 51y2C − 24yC + 36

the splitting field of which is of order 24, meaning that even if the degree of the
polynomial is 4, it is not solvable by square radicals, and

P (yC) = 2701y3C − 12871y2C + 43008yC − 28224

with degree 3. Therefore, this problem is not constructible.

Example 2. In the problem 108, the given points are Ta, H and Ma, we use the
coordinates (0, 0) for Ta, (1, 0) for Ma, and parametric coordinates (a, b) for H.
The triangularization of the corresponding polynomial system gives the following



system: 

xC + xB − 2 = 0
−a2 − byA + x2

B + 2a− 2xB = 0
yC = 0
yB = 0
xA − a = 0
a3 + abyA − a2 + y2A = 0

which is obviously constructible (all the equations have degree at most 2) and
moreover, it is simple enough to solve with square radicals, for instance yA =
(a/2)(−b±

√
b2 − 4a + 4), and to translate the formulas into a straightedge and

compass construction that mimics the computation (Figure 1). Recall that it
is possible to perform additions, multiplications, divisions and root extract by
using ruler and compass constructions.

This construction might not be elegant, but it is perfectly valid. A new chal-
lenge might be to find appealing geometric constructions for problems 1083 and
119 (see below).
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Fig. 1: Geometric translation in GeoGebra of the system given in Example 2.
Parameters a and b correspond to the free point H: this point can be moved and
the figure is transformed accordingly.

In Appendix, we list relevant polynomials for all the problems with unknown
status [20].

3 The GeoGebra figure can be found at url https://sites.google.com/site/

pascalschreck/adg14



3 Computer-Assisted Solving of Constructible Problems

Our second system, ArgoTriCS, equipped with relevant geometry knowledge,
pursues very different aims. It is capable of solving almost all solvable problems
from Wernick’s list: 66 out of 74 [16, 15, 13]. The system was implemented in
PROLOG, has around 6000 lines of code, while the solving times span from a
couple of milliseconds to more than an hour. The longest generated construction
is the construction for the problem 101: {Ma, Ha, I} – it consists of 14 steps
(mostly compound construction steps, such as construction of the midpoint of a
segment). The system also detects if the problem is redundant or locus depen-
dent. The system produces a construction in a natural language form, and in
the format of a dynamic geometry tool GCLC [9], so corresponding illustrations
can be also automatically generated. The next example shows an automatically
generated solution for the problem 25 : {A,Ma, Ta} (along with non-degenerate
conditions and determination conditions), while the corresponding illustration
is given in Figure 2.

A

Ma Ta

Na

O

CB Ma

Mb

G

A

B C

Fig. 2: Illustration for the problem 25 (left) and for the problem 84 (right)

Example 3. Given points A, Ma, and Ta, construct the triangle ABC.

1. Using the point A and the point Ta, construct a line sa (rule W02);
2. Using the point Ma and the point Ta, construct a line a (rule W02);
3. Using the point Ma and the line a, construct a line ma (rule W10b);
4. Using the line ma and the line sa, construct a point Na (rule W03);
5. Using the point A and the point Na, construct a line m(ANa) (rule W14);
6. Using the line m(ANa) and the line ma, construct a point O (rule W03);



7. Using the point A and the point O, construct a circle k(O,C) (rule W06);
8. Using the circle k(O,C) and the line a, construct a point C and a point B

(rule W04).

Non-degenerate conditions: line a and circle k(O,C) intersect; points A and
O are not the same; lines m(ANa) and ma are not parallel; lines ma and sa are
not parallel.

Determination conditions: lines m(ANa) and ma are not the same; points A
and Na are not the same; lines ma and sa are not the same; points Ma and Ta

are not the same; points A and Ta are not the same.

Unlike other systems for automatically solving construction problems, Ar-
goTriCS also considers correctness of the constructions generated and invokes
automated geometry theorem provers – OpenGeoProver [12] and the provers
built in the GCLC tool. Each construction generates three theorems – one for
each given point; for instance, if the point G is given, then it should be proved
that G is indeed the centroid of the constructed triangle ABC. So, for 92 prob-
lems solved by ArgoTriCS (66 S problems, and all L and R problems), there
are 276 theorems (some of them trivial – if a triangle vertex is given). Out of
276 theorems, 194 were successfully proved by at least one prover. In addition,
for all problems involving only the points A,B,C,Ma,Mb,Mc, G, we generated
machine verifiable proofs for the correctness of constructions – proofs verified
by the proof assistant Isabelle [19]. The next example gives an automatically
generated solution for the problem 84 : {Ma,Mb, G}, illustrated in Figure 2.

Example 4. Given points Ma, Mb, and G, construct the triangle ABC.

1. Using the point Ma and the point G, construct a point A (rule W01);
2. Using the point Mb and the point G, construct a point B (rule W01);
3. Using the point Ma and the point B, construct a point C (rule W01).

No non-degenerate conditions.
No determination conditions.

For this problem, the central theorem proved formally within the Isabelle
proof assistant, with a help of automated theorem provers, is the following:

∀Ma,Mb, G.

¬collinear(Ma,Mb, G)⇔ ∃A,B,C.(midpoint(Ma, B,C)∧
midpoint(Mb, A,C) ∧ centroid(G,A,B,C) ∧ ¬collinear(A,B,C))

The system ArgoTriCS was used for automatically generating a compendium4

of all problems from the extended Wernick’s list (for all 560 triples of character-
istic problems) – spanning around 3000 pages, and also an on line encyclopedia
with animated solutions for all solved problems [14].

4 Available online from: http://www.matf.bg.ac.rs/~vesnap/compendium_wernick.
pdf



4 Conclusions and Future Work

In this paper we presented the final version of Wernick’s list – a list of triangle
location problems, presented in 1982 and with a number of construction prob-
lems with unknown statuses until recently. These updates were produced by our
computer-based systems, while for almost all solvable problems our system can
produce elegant constructions with associated illustrations. These results show
the power of modern computer systems in areas such as symbolic computation,
problem solving and theorem proving.

For future work, we are planning to consider, in analogy, other corpora of
triangle construction problems — location problems involving additional points
[3] or construction problems based on various geometrical quantities [10, 6, 7].
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Appendix

Summary of our results
We recall here the results used in [20], by giving coordinates of the characteristic
points of the problem, and then the last equation of the systems obtained after
triangularization using the Maple implementation of regular chains. Fortunately,
testing the last equation was enough for the open problems.

Wernick 77 : O,Ha, Tb

Coordinates: (0, 0), (−1,−3) and (−3, 0).

84349y8A + 668100y7A + 908434y6A − 6940782y5A − 32743501y4A − 63643476y3A −
72253168y2A − 56499066yA − 25568010



the splitting field of which has degree 8! = 40320 which is not a power of 2: this
problem is not RC-constructible

Wernick 78 : I, O, Ha

Coordinates: (0, 0), (0, 1),(−1,−3).

P (yC) = 325y8C + 2050y7C − 75y6C − 11256y5C + 7749y4C + 8964y3C − 107730y2C
+ 160380yC − 14580

the splitting field of which has degree 8!
105 = 384 which is not a power of 2.

Therefore, this problem is not RC-constructible.

Wernick 81: O, Ta, Tb

Coordinates: (0, 0), (−1,−3) and (−3, 0).

P (yC) = 5202928809y8C +34323168906y7C +64988457138y6C−168831818766y5C−
1131189431845y4C −2336530456944y3C −2257027274736y2C −1030105859328yC −
178376649984

the splitting field of which has degree 8! = 40320. Therefore, this problem is not
RC-constructible.

Wernick 113: Tc, Tb, Ma

Coordinates: (0, 0), (2, 2) and (4, 0). We get two systems, for the first one we
have the polynomial:

P (yC) = 25y3C − 94y2C + 160yC − 128

and for the second one:

P (yC) = 3y3C − 10y2C + 60yC − 72

Therefore, this problem is not RC-constructible.

Wernick 118: Tb, Ha, G
Coordinates Tb(0, 0), Ha(6, 0) and G(4, 3)

P (yC) = y5C + 136y4C − 848y3C + 14112y2C − 52164yC + 52488

Therefore, this problem is not RC-constructible.

Wernick 119 I, Ha, G
When choosing coordinates (0, 0) for I, (1,−2) for Ha and (1, 1) for G, we obtain
two systems. The second one corresponds to non real solutions, and the first one



contains the following polynomial of degree 4:

P (yC) = 289y4C − 867y3C − 57528y2C − 99144yC − 41472

the splitting field of which has degree 8 over Q. This result does not mean that
the problem is RC-constructible. In order to prove its RC-constructibility, we
have to take parameters a and b as coordinates for one of the three points and
then compute its Galois group. The triangularization produces a huge system
displayed with more than 400 lines and the coefficient of the degree 4 term of
the irreducible polynomial we want to test is :

19683a9−59049a8 +(78732b2 +61236)a7 +(−183708b2−20412)a6 +(118098b4 +
166212b2 − 4374)a5 + (−196830b4 − 72900b2 + 2754)a4 + (78732b6 + 148716b4 +
10692b2+324)a3+(−78732b6−61236b4+3564b2−108)a2+(19683b8+43740b6+
18954b4 − 756b2 − 21)a− 6561b8 − 8748b6 − 3078b4 − 108b2 − 1

Maple is powerful enough to compute Galois’ group of this huge parameter-
ized polynomial and find:

”4T3”, {”D(4)”}, ”− ”, 8, {”(13)”, ”(1234)”}

From this result, we can conclude that the problem is RC-constructible.
We confirm that result by using Gao and Chou’s method [8]. This method

leads to heavy computations but allows, in principle, to extract a RC-construction.
Unfortunately, it is almost impossible for this concrete problem. The equation
of degree 3 considered in that method is huge: this is, for the sake of illustration,
just the coefficients for the term of degree 3:
12754584a13+76527504a11b2+191318760a9b4+255091680a7b6+191318760a5b8+
76527504a3b10+12754584ab12−55269864a12−280600848a10b2−573956280a8b4−
595213920a6b6 − 318864600a4b8 − 76527504a2b10 − 4251528b12 + 93533616a11 +
416649744a9b2+731262816a7b4+629226144a5b6+263594736a3b8+42515280ab10−
72748368a10−314613072a8b2−515852064a6b4−387361440a4b6−121877136a2b8−
8503056b10 + 18108360a9 + 115263648a7b2 + 214465968a5b4 + 155574432a3b6 +
38263752ab8+8030664a8−4408992a6b2−48813840a4b4−42200352a2b6−5826168b8−
4269024a7−11547360a5b2+1469664a3b4+9867744ab6−536544a6+2309472a4b2+
2869344a2b4 − 1469664b6 + 355752a5 + 618192a3b2 − 390744ab4 + 55080a4 −
89424a2b2 − 71928b4 − 9936a3 − 24624ab2 − 3024a2 − 1296b2 − 264a− 8

Wernick 122: Tb, Ta, G
With coordinates Tb(0, 0), Ta(4, 0) and G(2, 1), we get two systems containing
the disqualifying equations:

P (yC) = y4C − 6y3C − 51y2C − 24yC + 36

the splitting field of which is of order 24 and



P (yC) = 2701y3C − 12871y2C + 43008yC − 28224

Therefore, this problem is not RC-constructible.

Wernick 123: I, Ta, G
With the coordinates (0, 0), (4, 0) and (2, 1), we obtain three irreducible triangu-
lar systems, but the last one does not have real solutions. The first one contains
the polynomial:

P (yC) = 98596y8C−533172y7C+1934365y6C−2612838y5C+541114y4C+2325666y3C+
162729y2C − 3815532yC + 1555848

the Galois group of which is:
”8T44”, ”[24]S(4)”, ”− ”, 384, ”(48)”, ”(18)(45)”, ”(1238)(4567)”

And the second one

P (yC) = 4y6C − 36y5C + 192y4C − 612y3C + 81y2C + 2025yC − 3402

Therefore, this problem is not RC-constructible.

Wernick 127: Tc, Hb, Ha

Coordinates (0, 0), (0,−6) and (6,−2).

P (yC) = 8125y4C + 146484y3C + 830844y2C + 1715040yC + 1049760

The splitting field of which has degree 24 over Q. Therefore, this problem is not
RC-constructible.

Wernick 128: Tc, Hb, Ha

Coordinates (0, 0), (0,−6) and (6,−2).

P (yC) = 8125y4C + 146484y3C + 830844y2C + 1715040yC + 1049760

which is not RC-resolvable since its splitting field has degree 24. Therefore, this
problem is not RC-constructible.

Wernick 132: Ta, Tb, Ha

Coordinates (0, 0), (4, 0), and (−1, 3).

P (yC) =
9825y6C−72620y5C +691848y4C−403200y3C +1442880y2C +10886400yC−15552000

Therefore, this problem is not RC-constructible.



Wernick 134: Tc, Tb, Ha

Coordinates (0, 0), (0, 2) and (2, 1).

P (yC) =
524475y8C−5345280y7C+24048076y6C−62358704y5C+102412544y4C−109631360y3C+
75046720y2C − 30134400yC + 5432000

the Galois group of which is of order 384. Therefore, this problem is not RC-
constructible.

Wernick 135: I, Tb, Ha

With points I(0, 0), Tb(0, 2) and Ha(2,−1), we get two systems. In the first one,
we have the polynomial:

P (yC) =
58968y8C−194436y7C+453056y6C−311496y5C+319980y4C−526960y3C+466030y2C−
210025yC + 28000

the splitting field of which has degree 40320. And we have in the second one:

P (yC) = 572y5C − 1624y4C + 2088y3C + 2532y2C − 585yC + 1200

Therefore, this problem is not RC-constructible.

Wernick 136: Ta, Tb, H
With points Ta(0, 0), Tb(4, 0) and H(2,−1), we get two systems. The first one
contains the polynomial:

P (yC) = 15y4C − 8y3C − 148y2C − 32yC + 192

the splitting field of which has degree 24. And we have in the second one:

P (yC) = 5705y3C + 25412y2C + 12288yC − 9216

Therefore, this problem is not RC-constructible.

Wernick 137 : I, Ta, H
Coordinates (0, 0), (a, b) and (0,−2). We take parameters as coordinates of Ta

as we thought that the problem was constructible. We obtain two systems after
more than 6 hours of computation. The following polynomial in yA is the last
equation of the first component

(9a4 + (18b2 + 36b− 12)a2 + 9b4 + 36b3 + 84b2 + 96b + 64)y4A
+ (18a4 + (78b2 + 192b + 48)a2 + 60b4 + 192b3 + 352b2 + 288b + 128)y3A
+((30b+36)a4+(30b3+160b2+256b+96)a2+148b4+384b3+528b2+320b+64)y2A



+ ((24b+ 24)a4 + (96b3 + 224b2 + 160b+ 32)a2 + 160b4 + 352b3 + 320b2 + 128b)yA
+ (24b2 + 24b)a4 + (80b3 + 112b2 + 32b)a2 + 64b4 + 128b3 + 64b2

the Galois group of which is:
”4T5”, ”S(4)”, ”− ”, 24, ”(14)”, ”(24)”, ”(34)”

The second system provides an equation of degree 3. We can then conclude
that this problem is not RC-constructible.


