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Abstract
In this paper, we propose a new approach for automated verification of informal proofs in
Euclidean geometry using a fragment of first-order logic called coherent logic and a cor-
responding proof representation. We use a TPTP inspired language to write a semi-formal
proof of a theorem, that fairly accurately depicts a proof that can be found in mathemati-
cal textbooks. The semi-formal proof is verified by generating more detailed proof objects
expressed in the coherent logic vernacular. Those proof objects can be easily transformed to
Isabelle and Coq proof objects, and also in natural language proofs written in English and
Serbian. This approach is tested on two sets of theorem proofs using classical axiomatic
system for Euclidean geometry created by David Hilbert, and a modern axiomatic system E
created by Jeremy Avigad, Edward Dean, and John Mumma.

Keywords Informal proofs · Coherent logic · Euclidean geometry · Interactive theorem
proving · Automated theorem proving

Mathematics Subject Classification (2010) 03B35 · 68T15

1 Introduction

In recent years, we have become aware that writing proofs using pen and paper alone is not
always reliable, and writing proofs with the help of a computer has gained in importance.
Formalization of important mathematical textbooks is an ongoing work, and there is a con-
stantly growing repository of important theorems and parts of many theories that are proven
using interactive theorem provers [10, 11, 18, 19]. Nevertheless, theorem proving with the
help of a computer is still not widely used by mathematicians, nor by high school and uni-
versity students. In that community, the vast majority of proofs are pen-and-paper proofs
and high school and university textbooks rely on them exclusively.

There are noticeable differences between proofs of theorems written with interactive the-
orem provers and pen-and-paper proofs. Formal theorem proving increases our confidence
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in the correctness of a proof, while proofs in mathematical textbooks intuitively explain to
the reader why a certain theorem holds. Or, like Marc Bezem and Dimitri Hendriks noted:
a proof explains why the theorem is true, and a formal proof does so in great detail [5].

Learning the language of an interactive theorem prover is not trivial and, despite recent
efforts [23], proof scripts still cannot be shared between different interactive theorem
provers. Furthermore, formalization of a mathematical textbook is a challenging process
since verifying the proofs using interactive theorem provers is often far from trivial. The
main reason for this is that textbook proofs are often imprecise and can have a lot of missing
steps. On the other hand, those proofs have been relied on for several hundred years, they are
essential for everyday mathematical practice, and in most cases should not be changed. Fill-
ing in the missing steps, which formal theorem proving requires, would make those proofs
too cumbersome for an average reader.

In this paper we offer a different way to formulate and verify informal proofs for some
geometry theorems in coherent logic (a fragment of first order logic called geometric logic).
Instead of learning the language of a specific interactive theorem prover and filling in the
missing parts of a proof,1 an informal proof will be translated into a semi-formal proof
written in a TPTP-like [52] language. The language of semi-formal proofs is simple and
fairly accurately depicts the language of informal mathematics used in geometry textbooks.
The set of automated theorem provers will be used to generate the XML proof scripts of the
coherent logic vernacular [47]. Those proof scripts can be translated, using proper XSLT
style-sheets, into formal proofs verifiable in interactive theorem provers Isabelle and Coq,
and also readable, natural language proofs in English and Serbian.

We will test this approach using two axiomatic systems for Euclidean geometry. First we
will use the newly created axiomatic system E and several proofs of Euclid’s postulates, and
then we will use a classical Hilbert’s axiomatic system with the set of theorem proofs found
in Serbian high school geometry textbooks.

The experiments we conducted showed that our approach can be useful for automated
verification of the semi-formal proofs that resemble geometry textbook proofs. The whole
package that includes the program, both axiomatic systems, the sets of theorem proofs, and
the XSLT files used for translation of XML proof scripts to the target languages can be found
on-line.2 The approach is described and tested on geometry theorems, but is not limited
to geometry and can be used with any coherent logic theory. Automated verification of a
semi-formal proof of a theorem is carried out using a previously defined set of axioms and
definitions expressed in coherent logic. The semi-formal proof and the axiomatic system
that is used for verification are specified by the user and are included through external files
(they are not hard-coded into the system). This paper extends our previous short paper that
describes the use of the basic version of the system [46, 50] (sadly in Serbian only).

This paper is organized as follows: the Background section will give an overview of tools
used in this paper. The Formal rendering of an informal proof section will describe the
language used to write semi-formal proofs and the necessary translations that were made.
The Approach for automated verification of semi-formal proofs section will give detailed
explanation of the proposed approach. The approach is applied on two different sets of the-
orems, and observations made during those verifications are presented in the following two
sections. In the Related work section we discuss similar approaches, and in the Conclusions

1Various interactive theorem provers have tools and tactics with different levels of automation that can be
used for this purpose [9, 14].
2http://argo.matf.bg.ac.rs/?content=argochecker
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and future work section we draw final conclusions and present some ideas for the future
work.

2 Background

In this section, we give a brief overview of computer-assisted theorem proving and the
coherent logic vernacular that is used for generating formal proof scripts.

2.1 Computer-assisted theorem proving

Over the last few decades, many powerful programs for interactive and automated theorem
proving have been developed, and today, computer-assisted theorem proving is used more
than ever.

Interactive theorem provers are programs created for computer aided verification of
proofs of theorems with respect to the given underlying logic. The proofs are mostly writ-
ten by the user with certain amount of automation, but even so, the process of writing a
proof generally requires considerable time. Also, reuse of the existing proofs, in case of
small changes in a theory, can be difficult. The most popular interactive theorem provers
nowadays are HOL-Light [20], Isabelle [37], Coq [53], and Mizar [56].

Programs for automated theorem proving are extremely efficient and capable of work-
ing with a large number of formulas. They are mostly used to prove or disprove extremely
difficult conjectures. The most prominent step in automated theorem proving was the proof
of the Robbins conjecture by William McCune [29] (in the 1996). Significant results were
achieved in the field of equational algebra with the assistance of automated theorem provers.
They were used to solve some open problems in quasigroup and loop theory [28, 39]. Nev-
ertheless, automated theorem provers still have some shortcomings. The proof objects are
usually somewhat neglected, they are not generated in a standardized form, and reusing the
proof is generally not possible. Automated theorem provers can have bugs, and therefore
do not provide a high degree of certainty in the correctness of the results. Still, they can be
used for filtering large sets of axioms and theorems of the theory [9, 31, 32]. Over the last
few years, automated theorem provers have been used more frequently in combination with
interactive theorem provers. In certain cases this collaboration discovered new mathemat-
ical principles. Experiments with MML3 (Mizar Mathematical Library) using an AI/ATP
system [24] produced shorter proofs for some theorems. This was due to symmetry between
concepts used in the previously proven theorems that were detected by the AI/ATP system,
which was not fully utilized by the human author.

Another direction in the development of theorem provers was motivated by the need to
generate human-friendly, textbook-like, readable proofs. In some areas of computer-assisted
theorem proving, obtaining readable proofs is often not a priority. That said, readable proofs
play an essential role in everyday mathematical practice as they help humans gain more
insight in the underlying mathematical theory. The importance of readable proofs is rec-
ognized through the development of programs for both automated and interactive theorem
proving. New automated theorem provers with human style output [17, 36, 48] have been
introduced, and there are increasing efforts to make interactive theorem provers even more
human-friendly [55].

3http://www.mizar.org/
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2.2 Coherent logic vernacular

Coherent logic (CL) is a fragment of the first order logic suitable for automated theo-
rem proving and generation of standardized readable proofs [4]. Initially, CL was used by
Skolem and recently is used by many different authors for expressing and formalizing sig-
nificant parts of mathematics, especially geometry [2, 5, 16, 51]. There exists a translation
of linear complexity from first order logic to CL that preserves logical equivalence (and
does not involve Skolemization) [4, 40]. CL consists of the implicitly universally quantified
formulas of the following form [5]:

A1 ∧ . . . ∧ An ⇒ ∃x1B1 ∨ . . . ∨ ∃xmBm (1)

where n ≥ 0, m ≥ 0, and each vector xj denotes a sequence of variables x1, x2, . . . , xkj

(kj ≥ 0), Ai (for 1 ≤ i ≤ n) are first-order atoms, and Bj (for 1 ≤ j ≤ m) are conjunc-
tions of first-order atoms C1 ∧ . . . ∧ Clj (lj ≥ 0). If m > 1, a coherent logic formula is
called a disjunctive formula. Existential quantification is allowed in the conclusion of the
formula, so CL can be viewed as an extension of the resolution logic. The conjecture is
being proved directly and is left unchanged, and there is no need for Skolemization. The
proofs in coherent logic are intuitive and the reasoning is constructive.

For the sake of simplicity, we will use only function symbols of arity zero (i.e. con-
stants). A witness is a new constant, not appearing in the axioms used nor in the conjecture
that is being proved. A term is a constant or a variable. An atomic formula is either ⊥ or
p(t1, . . . , tn) where p is a predicate symbol of arity n and ti (1 ≤ i ≤ n) are terms. A closed
atomic formula over constants is called a fact. CL deals with the sets of facts — ground
atomic expressions.

CL does not involve negation. Negation of a single atom ¬A can be represented in the
form A ⇒ ⊥. In order to handle negation in general, additional predicate symbols will be
introduced to abbreviate subformulae. Moreover, for every predicate symbol R (that appears
in the form ¬R) a new symbol R is introduced. Symbol R will stand for ¬R, and the
following axioms are postulated [40]:

∀x(R(x) ∧ R(x) ⇒ ⊥), ∀x(R(x) ∨ R(x)) (2)

Usually coherent logic is used as a one-sorted theory. In this paper we will focus on
geometry, and since geometry is a many-sorted theory, we will use the usual reduction of
a many-sorted logic to a one-sorted logic that introduces new predicate symbols for every
sort (point, line, etc.).

Coherent logic vernacular (CLV) is an XML-based format used for proof representation
in coherent logic [47]. The vernacular is simple and expressive and can be translated to
different formal and natural languages. This feature enables us to share the same mathemat-
ical knowledge between different proof assistants. Several XSLT files are used to transform
the proofs to desired formats. At the moment there are four XSL transformations that are
used to generate formal proofs in Isabelle and Coq languages (VernacularISAR.xsl, Ver-
nacularCoqTactics.xsl), and readable proofs in English and Serbian formatted in LATEX
(VernacularTex.xsl, VernacularSrpskiTex.xsl). The constructed XSLT style-sheets are rela-
tively easy to build and maintain. Each of the files is between 500 and 1000 lines long. A
DTD (Document Type Definition) file Vernacular.dtd is used to describe the structure of the
proofs. Parts of the file are listed below, describing the notion of a theory, a theorem, and a
proof.
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...
<!--******** Theory **************-->
<!ELEMENT theory (theory_name, signature, axiom*) >
<!ELEMENT theory_name (#PCDATA)>
<!ELEMENT signature (type*, relation_symbol*, constant*) >
<!ELEMENT relation_symbol (type*)>
<!ATTLIST relation_symbol name CDATA #REQUIRED>
<!ELEMENT type (#PCDATA)>
<!ELEMENT axiom (cl_formula)>
<!ATTLIST axiom name CDATA #REQUIRED>
...
...
...
<!--******** Theorem **************-->
<!ELEMENT theorem (theorem_name, cl_formula, proof+)>
<!ELEMENT theorem_name (#PCDATA)>
<!ELEMENT conjecture (name, cl_formula)>
<!--******** Proof **************-->
<!ELEMENT proof (proof_step*, proof_closing, proof_name?)>
<!ELEMENT proof_name EMPTY>
<!ATTLIST proof_name name CDATA #REQUIRED>
<!--******** Proof steps **************-->
<!ELEMENT proof_step (indentation,modus_ponens)>
<!ELEMENT proof_closing (indentation, (case_split|efq|from),
(goal_reached_contradiction|goal_reached_thesis))>
...

The process of transforming generated XML proofs to formal and natural language
proofs must be done with care, but is fairly straightforward. The proof steps use only the fol-
lowing rules (a modification of rules from [5]): modus ponens, case splits, assumption, and
ex falso quodlibet. Each of the proof steps is easily translated into the target languages. For
readability reasons, we prefer to use native negation as opposed to the CL defined negation
predicate symbols. We use the specific layout.xml file to define a natural language scheme
that is used in a natural language proof. At the moment, the XSLT style-sheets translate
all the steps of the generated XML proof scripts. Sometimes, this can result in proofs that
are too detailed. We plan to simplify such proofs in the future by potentially ignoring the
irrelevant proof steps.

Coherent logic prover ArgoCLP [48] is a generic theorem prover that can be used with an
arbitrary coherent logic theory. It reads problems given in the TPTP form, and exports the
proof objects in the XML format of the coherent logic vernacular. All axioms and the con-
jecture being proved must be in the coherent logic form. For each conjecture, the ArgoCLP
prover generates three individual XML files: theory, proof, and theorem. The theory file
contains the signature and the axioms that are used. If the ArgoCLP prover is successful,
the proof file contains the theorem and the generated proof. If it is unsuccessful it contains
just the conjecture. An additional XML file named frontpage.xml is used to store some basic
information (name of the theory, author’s names, prover that is used). The theorem file is
used as an outline for other files. The details of the theorem file are displayed below. The
xsl-stylesheet processing instruction is used to specify which of the XSLT style-sheets is
used for transformation and it is recommended to use separate directories for translation to
different target languages. The chapter tag is used for grouping of files if needed. Such file
structure enables easy integration of several theorem proofs (that use the same frontpage
and theory files) into a single larger file.
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<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE main SYSTEM "Vernacular.dtd">
<?xml-stylesheet href="VernacularISAR.xsl" type="text/xsl"?>

<main>
<xi:include href="frontpage.xml" parse="xml"

xmlns:xi="http://www.w3.org/2003/XInclude"/>
<xi:include href="theory_th_11_01.xml" parse="xml"

xmlns:xi="http://www.w3.org/2003/XInclude"/>

<chapter name="th_11_01">
<xi:include href="proof_th_11_01.xml" parse="xml"

xmlns:xi="http://www.w3.org/2003/XInclude"/>
</chapter>
</main>

Generated files first must be validated, using the following command:

xmllint --dtdvalid Vernacular.dtd --noout --xinclude

th_11_complete_proof.xml

and then translated to the target language (in this case, Isabelle):4

xsltproc --xinclude th_11_complete_proof.xml >

th_11_complete_proof.thy

3 Formal rendering of an informal proof

In this section we describe the language of the semi-formal proof and the translation from
the textbook proof to the semi-formal proof that can be verified within our approach. The
length of the semi-formal proofs should not be much larger than the length of the proofs
found in mathematical textbooks. We want to preserve the explanatory value of the proof.
The semi-formal proof can have some details missing, with enough information to get auto-
matically generated complete formal proofs from it (with all the missing details filled in).

Theorems and axiomatic systems Automated verification of the semi-formal proofs is
possible only for theorems that belong to coherent logic, i.e. formulae of the following form:

A1 ∧ . . . ∧ An ⇒ ∃x1B1 ∨ . . . ∨ ∃xmBm

The axiomatic system that is used for verification must be in the coherent logic form as
well. A significant number of geometry theorems and axioms belong to coherent logic and
those that do not belong can, in most cases, be easily translated into coherent logic. There
is a general translation procedure of formulas of first order logic to coherent logic [40], but
here we use the translations specific to Euclidean geometry [2, 51]. Translations to coherent
logic will be performed manually, while formulating the semi-formal proof.

4Translated LATEX file uses a custom argoclp.sty file to display the proper indentation of proof steps.
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Translation from textbook sentences to formulae Textbook proofs often use the language
of everyday vernacular, and not just the mathematical vernacular. In general, it is not easy
to interpret a textbook proof. Also, the level of detail in different textbook proofs can sig-
nificantly vary. In our setting, we choose to extract only the relevant information from the
proof. Every time a context is changed in the proof, or a new relevant step is introduced,
we will also introduce a new proof step (for example, the existence of the intersection point
of two lines, or the conclusion that certain points are collinear). All additional information
about the axioms and definitions that are used will be ignored.

At the moment, our language allows only direct linear proofs. Case distinctions are
ignored, only their conclusions are included. Also, we ignore reasoning by contradiction
and we replace it by just stating the positive conclusion. In both cases, the sub-proof will not
be a part of the semi-formal proof. However, the conclusion is kept and automated theorem
provers are used to discover the missing case distinctions. This means that automated theo-
rem provers will have to fill in some parts of the proof. To accomplish this task, they use
the complete set of definitions and axioms which includes the disjunctive formulas (axioms
with the disjunctive conclusions) and the rule of excluded middle (axioms of the form (2)
are postulated for all the predicate symbols).5

The language of the semi-formal proof The language of the semi-formal proof is based on
the inference rules of coherent logic. In general, proof steps of the semi-formal proof can be
described as a subset of the first order formula with equality. Each proof step can be either
a left hand side or a right hand side of a coherent logic formula. The semi-formal proof is
a finite sequence of formal statements. At the moment, only linear semi-formal proofs are
allowed. In the future, we plan to enable reasoning by cases.

The first step of the semi-formal proof is assuming the premiss of the conjecture to be
proved, i.e. a conjunction of first-order atoms (left hand side of a CL formula, without
the quantification6).

Subsequent step[s] is a possibly existentially quantified conjunction of first-order atoms
(right hand side of a CL formula for m = 1).

The last step of the semi-formal proof is the goal of the informal proof, i.e. a disjunction
of a possibly existentially quantified conjunctions (right hand side of a CL formula for
m ≥ 1).

The conclusion of the conjecture that is proved will not always be the last step of the
semi-formal proof. If the conjecture is existentially quantified, the proof will show the exis-
tence of some proof objects with certain properties. In such cases it can happen that the
objects are constructed earlier in the proof, while the rest of the proof will show that the
objects satisfy the required properties.

Sometimes the proof of a theorem is not available. In that case, the semi-formal proof will
only have two formulas, the premiss of the conjecture and the conclusion of the conjecture
to be proved. If a proof of a theorem is available and the system can not verify the complete
proof, the user can try to split subsequent steps (a conjunctions of atomic formulae) into
smaller steps and run the system again.

5See for example the proof of Auxiliary 1 in the Section 5.
6Universal quantification in the coherent logic formulae is implicit, but has the scope of the whole formula,
and not just the left hand side of the formula.
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Table 1 Examples of the semi-formal proof steps

Assume A and B are two distinct points.

assume [A,B] : (point(A) & point(B) & A!=B)

Show that points A, B, C are colinear.

have (col(A,B,C))

Construct a plane R such that the point A and the line P lie on the plane R.

let [R] : (plane(R) & inc po pl(A,R) & inc l pl(P,R))

Show that points A, B, and C lie on the plane R.

have (inc po pl(A,R) & inc po pl(B,R) & inc po pl(C,R))

Construct two different points A and B such that A and B lie on the line L.

let [A,B] : (point(A) & point(B) & A!=B & inc po l(A,L) & inc po l(B,L))

The syntax The syntax used for representation of the semi-formal proof steps is simple and
self explanatory, and selected so that it enables easy integration into the TPTP conform-
ing formulas. The user works in a language similar to the language of automated theorem
provers.

There are three different types of proof steps. The first step always starts with the word
“assume” and it gives the context of the theorem that is proved. It can be read as: Under
the assumption of. All subsequent steps can start with the word “let”, which introduces new
objects into the proof and can be read as: Construct object[s] with the following property;7

or with the word “have” which introduces new relations over the existing objects and can
be read as: Show that the following relations hold.8

While formulating the semi-formal proof, the user can choose his own signature, but
there are a few limitations due to the use of the coherent logic theorem prover ArgoCLP.
Predicate symbols must be unique (whether or not they are used with different sorts of
objects) and predicate symbols of the positive form can not start with a letter n. For example,
relation of incidence will be represented with several predicate symbols for various sorts:
inc po l for points and lines, inc po pl for points and planes, and inc l pl for lines and
planes. Since coherent logic does not use negation, negative form of a predicate symbol is
introduced as described in the Section 2, and labeled with the letter n preceding a predicate
symbol for the positive form. For example, if the predicate symbol used for collinearity is
col, then the predicate symbol used for non-collinearity will be ncol.

Some semi-formal proof steps expressed in English, using those specific predicates, are
given in Table 1. Looking at the mathematical textbooks (especially geometry textbooks),
one can notice a lot of statements that can be represented by our semi-formal proof steps.

In the text below we will point out the most important translations made during the
formulation of the semi-formal proofs (translations were made on some conjectures, as well
as on certain proof steps).

7The sort of the constructed objects should be stated at the beginning of the formula.
8Different semantically equivalent sentences can be used as well.
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Unique objects A theorem that states that there exists one and only one point with certain
property is split into two theorems: the first one that states that such point exists, and the
second one that states that if there are two points with that property, those two points are the
same. The two theorems are equivalent to the original one.

While formulating the second semi-formal proof, a large part of the first semi-formal
proof is used. This is the same principle used in textbooks, so we can say that there is
one-to-one correlation with proofs from the book.

Nondegeneracy assumptions In Euclidean geometry a nondegenerate configuration of
objects in the conjecture being proved is often assumed. In the semi-formal proof of a the-
orem, that is used with our approach, the nondegeneracy assumptions will have to be made
explicit.

Also, some proof steps require the construction of new objects or, more precisely, giving
name to an existing object. In high-school geometry, and also in the Elements, lines, planes,
and circles (in the Elements) are named by listing two points that lie on the line, by three
points that lie on the plane, and by three points that lie on the circle. Every step with such
naming will produce few new steps in our semi-formal proof.

Those are the sentences of the following form: there exists a point D that does not belong
to the line AB. Before formulating the corresponding semi-formal proof step we need to
construct a new object of the line sort determined by the two distinct points A and B that will
be used instead of the line AB, with the assumption that the points A and B are different. In
the textbook proofs, those assumptions are sometimes left implicit. But, in the semi-formal
proof this type of a proof step is necessary. The sentence will be translated into the follow-
ing text: “For different points A and B, let L be the line determined by the points A and
B, let D be a point that does not belong to the line L”, and represented by the following
semi-formal proof steps:

have (A!=B)

let [L] : (line(L) & inc_po_l(A,L) & inc_po_l(B,L))

let [D] : (point(D) & ninc_po_l(D,L))

Reasoning by cases Looking at the proofs from geometry textbooks, one can notice that
reasoning by cases is often omitted, without loss of generality, due to the similarity between
different cases. In formal theorem proving, this is not an option. Still, in geometry reasoning
by cases is rarely used extensively, and at this moment, our approach does not support proof
steps that use reasoning by cases. But, if reasoning by cases is explicitly used in a proof,
such proofs can be linearized. The user can skip those proof steps and try to verify the
remaining parts of the proof. If the proof can not be verified without the steps that explicitly
use reasoning by cases, then the proof will have clear sub-proofs for each case and it will
be reasonable to introduce additional weaker theorems based on those cases (and formulate
corresponding semi-formal proofs).

All this shows that translation from the textbook proof of a theorem to the semi-formal
proof must be done with care. Even though semi-formal proofs that we can verify are
not identical to the proofs found in mathematical textbooks, the necessary translations are
minor, and they often present the inevitable first step in a transformation from the textbook
proof to the formal proof.
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4 Approach for automated verification of semi-formal proofs

In this section we describe the approach for automated verification of the semi-formal
proofs. The semi-formal proof and the set of axioms and definitions used for verification are
provided through external input files. The definitions will have the same status as the axioms.
The file with axioms and definitions must be given in the TPTP format in the coherent logic
form. The semi-formal proof must be given in the format described in the previous section.

The system is using publicly available automated theorem provers. It also uses additional
files of the coherent logic vernacular to validate the generated XML files and to translate
them to target languages. The whole process is completely automated. The system can be
downloaded from the web-page9 and accessed from the command line.

The approach uses the framework for automated theorem proving and the features of the
coherent logic vernacular. The framework for automated theorem proving is using several
automated theorem provers. The resolution theorem provers Vampire [41] and E [43] are
used for their efficiency, as preprocessors for filtering a large set of axioms and definitions.
The coherent logic theorem prover ArgoCLP [48] is used to generate a readable proof script
in the coherent logic vernacular. The generated proof scripts can be translated, using simple
XSLT style-sheets, into languages of different interactive theorem provers (Isabelle and
Coq) and different natural languages (English and Serbian). Several Python and shell scripts
are used for automated manipulation with input and output (generated) files.

The steps of the semi-formal proof will be verified individually. Some steps will be
trivial, like the application of a single axiom, but in some cases one step can hide an auxiliary
lemma whose proof contains a lot of missing facts that need to be derived so that the whole
proof can be verified.

The verification of a semi-formal proof, given the selected set of axioms and definitions,
can be described as follows:

1. Coherent logic auxiliary lemmas are formulated for each step of the semi-formal proof:

– The premiss of the current lemma is the conjunction of the previous steps of the
semi-formal proof, and the conclusion of the lemma is the current step.

– A theory that will be proved is formed. The theory consists of the set of all axioms
and definitions that are used, and the set of auxiliary lemmas.

– For each auxiliary lemma, a TPTP file will be created that is used with auto-
mated theorem provers. The TPTP file will consist of the given set of axioms and
definitions, and the current lemma as the goal.

2. Several theorem provers will try to prove all auxiliary lemmas and generate proof
objects in the XML form of the coherent logic vernacular:10

– Resolution theorem provers Vampire and E will be used to prove the lemma using
a generated TPTP file both in the original and the reverse order of lines (the order
of premisses often impacts the proving process). The list of used axioms, returned
by the resolution provers, will be used again until the smallest list is identified.

– Coherent logic prover ArgoCLP will be invoked with the acquired list of axioms
and the proof in the XML form of the coherent logic vernacular will be generated.

9http://argo.matf.bg.ac.rs/?content=argochecker
10Proving an auxiliary lemma is performed using the framework for theorem proving used in a larger
formalization project [51].
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3. Generated proofs of all lemmas will be combined into one XML document:

– Coherent logic prover ArgoCLP generates three XML files for each auxiliary
lemma: theorem, proof, and theory file (as described in Section 2).

– All generated proof scripts must be validated against the rules of the CLV. For
each step of the semi-formal proof, i.e. for each auxiliary lemma, we check if the
generated theorem file meets the given syntactical restrictions (using the DTD file
Vernacular.dtd).

– Formal and natural language files for individual lemmas are generated using the
XSLT style-sheets.11

– The generated proof files for all lemmas are merged into a new XML file using the
chapter tag (like the one presented below).

4. The generated document will be validated against the Vernacular.dtd file, and translated
into formal languages of Isabelle and Coq, and English and Serbian natural languages
(by using the appropriate XSLT style-sheets).

The following code outlines the proof steps of the semi-formal proof presented at the
end of this section (named th 11 complete proof.xml and it is available on-line).

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE main SYSTEM "Vernacular.dtd">
<?xml-stylesheet href="VernacularISAR.xsl" type="text/xsl"?>

<main>
<xi:include href="frontpage.xml" parse="xml"

xmlns:xi="http://www.w3.org/2003/XInclude"/>
<xi:include href="theory_trivial.xml" parse="xml"

xmlns:xi="http://www.w3.org/2003/XInclude"/>

<chapter name="Hilbert">
<xi:include href="proof_th_11_01.xml" parse="xml"

xmlns:xi="http://www.w3.org/2003/XInclude"/>
<xi:include href="proof_th_11_02.xml" parse="xml"

xmlns:xi="http://www.w3.org/2003/XInclude"/>
</chapter>
</main>

The proofs made by resolution theorem provers (in step 2) are hard to read, and the
interpretation and verification of such proofs is especially difficult. It is possible to directly
use proof by contradiction from the resolution theorem provers, but this is a considerably
challenging task [7]. Instead, we are using the ArgoCLP prover and the CLV translations for
generating readable and formal proofs, and those translations are straightforward and easy.

The architecture of the system is displayed in Fig. 1. The whole process of automated
proving, validation of XML files, and proof translation to the target languages is fully auto-
mated, without any user interaction. The described system is implemented in C++ and
Python. Formulation of auxiliary lemmas, validation of XML files, and final integration of
XML documents into one file are implemented in Python (and several shell scripts), while
the framework for automated verification of each lemma is implemented in C++. Since
automated theorem provers cannot guarantee that they will prove a conjecture, a time limit

11This step is not necessary, but it can be useful for examining the proof of individual steps. For example, if
the original proof is too long and we are interested in inspecting only certain proof steps.
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Fig. 1 The architecture of the system

must be set. Even if the system cannot prove some steps of the semi-formal proof, a formal
document will still be generated but proofs for those steps will be missing (labeled with
sorry in Isabelle, and with Admitted in Coq). In that case, the user can fill out the missing
part of the formal proof, or he can formulate a new semi-formal proof and then try again.

Natural language proofs One of the advantages of using the coherent logic vernacular is
the option of specifying the layout for certain predicate symbols. This is done by altering
the specific layout file layout.xml [47] directly and it is commonly used for translation
to natural language proofs. For example, a defined layout for cong(A,B,C,D) can be
(A,B) ∼= (C, D), and defined layout for inc_po_l(A,L) can be A ∈ l. If the user does
not want to change the layout, predicate names will be taken from the input files.

Examples The semi-formal proofs, the axiomatic system, and the automatically generated
formal documents in Isabelle and Coq, as well as the natural language proofs in English and
Serbian are available on-line,12 both for Hilbert’s axiomatic system, and for the axiomatic
system E. The system was tested on a server with 48 AMD Opteron(tm) Processor 6168.
The time limit for verification of individual proof steps is set to 60 seconds for all automated
theorem provers.

Here we will list one theorem, its textbook proof (this is an actual text taken from the
textbook [13]), a CL semi-formal proof, an automatically generated Isabelle proof, and a
natural language proof in English. The total time for verification and generation of final
proofs is 72 seconds.

12http://argo.matf.bg.ac.rs/?content=argochecker

http://argo.matf.bg.ac.rs/?content=argochecker
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Theorem 11: For a line p and a point A that does not belong to the line p, prove that all
lines that contain the point A and intersect the line p lie on a single plane.

Textbook proof:
Instructions: Prove that all these lines belong to the plane determined by the point A and
the line p.13

Even though this “proof” is more a hint than an actual proof, it can be used to formulate
the CL semi-formal proof that can be verified with our approach. It is obvious that the
introduction of a new object of the line sort is needed (the line q in the following statement),
and that we can say that we are proving the following theorem:

Theorem 11’: For a line p and a point A that does not belong to the line p, and a line q

that contains the point A and intersects the line p, prove that the line q lies on the plane
determined by the point A and the line p.

Now, even with this meager hint we can easily write the following semi-formal proof in
our syntax. Numbers are not part of the proof, they are used to improve the readability. We
have to stress that the construction of the plane in the step 1 is the necessary intermediate
step in the proof.

0. assume [P,A,Q]:(line(P) & point(A) & ninc_po_l(A,P) & line(Q)

& inc_po_l(A,Q) & int_l_l(P,Q))

1. let [R]:(plane(R) & inc_po_pl(A,R) & inc_l_pl(P,R))

2. have (inc_l_pl(Q,R))

The automatically generated natural language proof (in LATEX) is listed below. We decided
to improve the readability of the proofs by using the dominant naming scheme. Points are
denoted by capital Latin letters, lines are denoted by small Latin letters, and planes are
denoted by capital Greek letters.14 Using the layout.xml file we denoted the layout for
inc po l(A,P), inc po pl(A,R), inc l pl(P,R) to be A ∈ p, A ∈ α, p ∈ α (in that order); and
layout for int l l(P,Q) to be “lines p and q intersect”.

Theorem 1 (th 11 01) Assuming that A �∈ p and A ∈ q and lines p and q intersect there
exist plane α, such that A ∈ α and p ∈ α.

Proof

1. There exist a point B and a point C where B �= C and B ∈ p and C ∈ p (using
ax I3a).

2. From the facts B �= C and B ∈ p and C ∈ p and A �∈ p it holds that ¬col(B,C,A)

(using ax D1a).
3. From the fact ¬col(B,C, A) it holds that ¬col(C,A,B) (using ax sym ncol1).
4. From the fact ¬col(C,A, B) it holds that ¬col(A,B,C) (using ax sym ncol1).
5. From the fact ¬col(A,B,C) there exist a plane α, where A ∈ α and B ∈ α and C ∈ α

(using ax I4a).

13In Serbian: Uputstvo: Dokazati da sve ove prave pripadaju ravni odred̄enoj tačkom A i pravom p.
14We wanted the user to be able to recognize the sort of an object immediately, at the first glance, just like
when reading mathematical textbooks.
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6. From the facts B �= C and B ∈ p and C ∈ p and B ∈ α and C ∈ α it holds that p ∈ α

(using ax I6).
7. The conclusion follows from the facts A ∈ α and p ∈ α.

Theorem 2 (th 11 02) Assuming that A �∈ p and A ∈ q and lines p and q intersect and
A ∈ α and p ∈ α it holds that q ∈ α.

Proof

1. From the fact lines p and q intersect there exist a point B where p �= q and B ∈ p and
B ∈ q (using ax D6).
2. From the facts p ∈ α and B ∈ p it holds that B ∈ α (using ax D11).
3. It holds that A = B or A �= B.

4. Assume that: A = B.
5. From the facts B ∈ p and A = B it holds that A ∈ p.
6. From the facts A �∈ p and A ∈ p we get contradiction.

7. Assume that: A �= B.
8. From the facts A �= B and A ∈ q and B ∈ q and A ∈ α and B ∈ α it holds that q ∈ α

(using ax I6).
9. The conclusion follows from the fact q ∈ α.

10. The conjecture follows in all cases.

The automatically generated formal proof verifiable in the interactive theorem prover
Isabelle is listed below:

lemma th_11_01:
assumes "¬ inc_po_l A p" and "inc_po_l A q" and "int_l_l p q"
shows "∃(alpha::plane).(inc_po_pl A alpha ∧ inc_l_pl p alpha)"
proof -

obtain B::point and C::point where "B ˜= C" and "inc_po_l B p" and "inc_po_l C p"
using ax_I3a [of "p"] by auto
from ‘B ˜= C‘ and ‘inc_po_l B p‘ and ‘inc_po_l C p‘ and ‘¬ inc_po_l A p‘ have "¬
col B C A" by (rule ax_D1a)
from ‘¬ col B C A‘ have "¬ col C A B" by (rule ax_sym_ncol1)
from ‘¬ col C A B‘ have "¬ col A B C" by (rule ax_sym_ncol1)
from ‘¬ col A B C‘ obtain alpha::plane where "inc_po_pl A alpha" and "inc_po_pl
B alpha" and "inc_po_pl C alpha" using ax_I4a [of "A" "B" "C"] by auto
from ‘B ˜= C‘ and ‘inc_po_l B p‘ and ‘inc_po_l C p‘ and ‘inc_po_pl B alpha‘ and
‘inc_po_pl C alpha‘ have "inc_l_pl p alpha" by (rule ax_I6)
from ‘inc_po_pl A alpha‘ and ‘inc_l_pl p alpha‘ have ?thesis by auto
from this show ?thesis .
qed

lemma th_11_02:
assumes "¬ inc_po_l A p" and "inc_po_l A q" and "int_l_l p q" and "inc_po_pl
A alpha" and "inc_l_pl p alpha"
shows "(inc_l_pl q alpha)"
proof -

from ‘int_l_l p q‘ obtain B::point where "p ˜= q" and "inc_po_l B p" and "inc_po_l
B q" using ax_D6 [of "p" "q"] by auto
from ‘inc_l_pl p alpha‘ and ‘inc_po_l B p‘ have "inc_po_pl B alpha" by (rule
ax_D11)
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have "A = B ∨ A ˜= B" by (subst disj_commute, rule excluded_middle)
show ?thesis
proof(cases "A = B")

case True
from ‘inc_po_l B p‘ and ‘A = B‘ have "inc_po_l A p" by simp
from ‘¬ inc_po_l A p‘ and ‘inc_po_l A p‘ have "False" by (rule notE)
from this show ?thesis by (rule FalseE)

next
case False
from ‘A ˜= B‘ and ‘inc_po_l A q‘ and ‘inc_po_l B q‘ and ‘inc_po_pl A alpha‘
and ‘inc_po_pl B alpha‘ have "inc_l_pl q alpha" by (rule ax_I6)
from ‘inc_l_pl q alpha‘ show ?thesis by assumption

qed
qed
end

4.1 Comparison with the Sledgehammer tool

The approach presented in this paper has some similarities with the Sledgehammer
approach [8, 9], which is implemented within the proof assistant Isabelle and works with
resolution theorem provers E, SPASS [54], Vampire, and Z3 [34]. The list of axioms found
by those provers is passed to the internal prover Metis that constructs a formal proof. The
alternative is to use an algorithm that translates proofs generated by resolution theorem
provers [6, 7]. The translated proofs are referred to as natural deduction proofs, extended
with case analyses and nested subproofs, and they look like regular Isabelle proofs.

Our approach has a different agenda from Sledgehammer. Sledgehammer is a very pow-
erful tool with several automated theorem provers and additional tools at its disposal. The
Sledgehammer tool is more powerful than our system, but our approach is more suited for
the beginners.

We wanted to make a simple system. The goal is to verify proofs which resemble those
found in mathematical textbooks, without using the interactive theorem provers directly.
We believe that our semi-formal proofs are more suitable for users without any experience
with interactive theorem provers. While Sledgehammer can be used only by Isabelle users,
our automatically generated proofs can be used by both Isabelle and Coq users, directly or
as part of a larger formalization. Furthermore, unlike Sledgehammer, our approach offers
natural language proofs.

5 From Euclid’s proofs to formal proofs

Euclid’s Elements is one of the iconic textbooks for elementary geometry. Euclid was the
first that faithfully used axiomatic methods and derived many geometric properties rely-
ing only on logic rules [15]. Euclidean geometry was used undisputed for more than two
thousand years, until the nineteenth century when the use of diagrams (i.e. diagrammatic
reasoning) came to be viewed as flawed. This resulted in new axiomatisations made by
Hilbert (1899) and later Tarski (1959). Those axiomatizations were trying to eliminate the
use of diagrams and fill the gaps that were thought to be overlooked by Euclid. But in
2009 Jeremy Avigad, Edward Dean, and John Mumma developed a new axiomatic system
E for Euclid’s Elements [2]. They showed that diagrammatic reasoning in Euclid’s proofs is
actually controlled and guided by a distinct logic. They asserted a reliable method for dia-
grammatic reasoning using a simple set of relations, construction rules, and inference rules,
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Table 2 Some basic relations in the formal language E

on(a, L) point a is on line L

sameside(a, b, L) point a and b are on the same side of line L

between(a, b, c) points a, b, and c are distinct and collinear, and b is between a and c

onc(a, α) point a is on circle α

inside(a, α) point a is inside circle α

center(a, α) point a is the center of circle α

intersects(L,M) lines L and M intersect

intersects(L, α) line L intersects circle α

intersects(α, β) circles α and β intersect

cong(a, b, c, d) ab = cd

and showed that the proofs in their system faithfully represent the proofs from the Elements.
All references to the Elements refer to the Heath translation [15].

Language of E There are six sorts of objects in the language of E: points, lines, circles,
segments, angles, and areas. Small Latin letters are used for points, capital letters for lines,
and Greek letters for circles. In addition to the equality symbol, there are some basic rela-
tions between elements of these sorts.15 Language of E allows negation. Basic assertion or
a literal is an atomic formula or a negated atomic formula. Assertions over the first three
sorts are called “diagrammatic assertions”, and assertions over the last three sorts are called
“metric assertions”. Relations over the first three sorts of objects are given in Table 2. Sorts
of segments, angles, and areas are not used in this paper, but segments are represented by a
pair of points and several additional predicates are introduced.

Theorems and proofs in E Theorems in E have the following logical form:

∀a,L,α (ϕ(a,L,α) ⇒ ∃b,M,β ψ(a, b,L,M, α,β)), (3)

where ϕ is a conjunction of literals, ψ is either a conjunction of literals or the symbol ⊥,
and vectors a, L, and α (and b, M, and β) represent a sequence of points, lines, and circles.
This form is a subset of the coherent logic form.

There are several propositions and their auxiliaries that are proved in the axiomatic sys-
tem E. Words “Have” and “Hence”, that appear in the proofs, are not used as part of the
logical system, they are only used to improve the readability. “Have” is used to introduce
new metric assertions that are inferred from the diagram, and “Hence” is used to introduce
assertions that follow from previous metric assertions. The word “Let” is used to introduce
new objects on the diagram. Also, comments in the brackets are optional and are not used
as part of a proof. Abbreviations “Q.E.F.” and “Q.E.D.” are taken from the Elements and
they mark the distinction between a proof that ends with a construction, and a proof that
demonstrates certain properties.16

Original Euclid’s formulation of Proposition 1 of Book I is: On a given straight line,
construct an equilateral triangle. In this paper we will not use the proof from the Elements,
but the following proof in the axiomatic system E.

15http://www.andrew.cmu.edu/user/avigad/Papers/euclid/e.smt
16Original phrases are “that which it was required to do” (abbreviated by “Q.E.F.” for “quod erat faciendum”
by Heath), and “that which it was required to prove” (abbreviated by “Q.E.D.” for “quod erat demonstratum”).

http://www.andrew.cmu.edu/user/avigad/Papers/euclid/e.smt
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Proposition I.1 Assume a and b are two distinct points. Construct point c such that ab =
bc and bc = ca.

Proof
Let α be the circle with center a passing through b.
Let β be the circle with center b passing through a.
Let c be a point on the intersection of α and β.
Have ab = ac [since they are radii of α].
Have ba = bc [since they are radii of β].
Hence ab = bc and bc = ca.

From this proof, we can formulate the following semi-formal proof (with only minor mod-
ifications due to the syntax of our system). All steps of the proof are automatically verified.

0. assume [A,B] : (point(A) & point(B) & A != B)

1. let [K1] : (circle(K1) & center(A,K1) & onc(B,K1))

2. let [K2] : (circle(K2) & center(B,K2) & onc(A,K2))

3. let [C] : (point(C) & onc(C,K1) & onc(C,K2)

& intersectscc(K1,K2))

4. have (cong(A,B,A,C))

5. have (cong(B,A,B,C))

6. have (cong(A,B,B,C) & cong(B,C,C,A))

Avigad et al. noticed that the previous proposition is often used by Euclid with an
assumption that the point c is distinct from a and b, and that c is not on the line determined
by a and b. Those two statements are auxiliary lemmas that are easily stated and proved in
the language of E. Here we list the proof of the first lemma in the axiomatic system E.

Auxiliary 1 Assume a and b are two distinct points, ab = bc, and bc = ca. Then c �= a

and c �= b.

Proof
Suppose c = a.

Hence a = b.
Contradiction.

Hence c �= a.
Suppose c = b.

Hence a = b.
Contradiction.

Hence c �= b.

The proofs of both auxiliary lemmas are using reasoning by cases, which is not sup-
ported by our language at the moment. Therefore, we will consider the first lemma as if
there is no proof available (and let the system try to prove this conjecture on its own17).

17As we mentioned in the Section 3, automatically generated proofs can use case distinctions if disjunctive
formulas are provided by the user (as part of the axiomatic system).
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In the semi-formal proof of the second lemma we will add, as intermediate steps, the
conclusions from the first lemma. Semi-formal proofs are listed below. Both lemmas are
successfully automatically verified.

0. assume [A,B,C]:(point(A) & point(B) & A != B & point(C)

& cong(A,B,B,C) & cong(B,C,C,A))

1. have (C != A & C != B)

Auxiliary 2 Assume a and b are two distinct points, a is on L, b is on L, and ab = bc, and
bc = ca. Then c is not on L.

0. assume [A,B,C,L] : (point(A) & point(B) & line(L) & A != B

& on(A,L) & on(B,L) & point(C)

& cong(A,B,B,C) & cong(B,C,C,A))

1. have (C != A)

2. have (C != B)

3. have (non(C,L))

These three proofs were automatically verified within our system. In the paper by Avi-
gad et al. there is only one more theorem which covers the first three sorts with a proof
formulated in the language of E18 — Proposition I.2. The authors recognize that the proof
of this proposition is surprisingly complicated considering that it is the second proof in the
book. They identify a few missing steps in the proof, and they note: “where Euclid carries
out a complex construction without further justification, our system requires an explicit (but
brief) argument, amidst the construction, to ensure that a certain point lies inside a certain
circle”. This divergence is due to the Euclid’s implicit use of diagrammatic information in
the proof. Our system did not manage to verify four steps of the semi-formal proof. Two
auxiliary lemmas were not proven by the resolution theorem provers, and two lemmas were
proven by the resolution provers but not by the coherent logic prover.19

There are several examples of proofs in the formal system E that the authors provided.
The approach described in our paper managed to verify three of them completely and one
of them partially. The language of E is closely related to the coherent logic and the lan-
guage described in this paper. Proofs in the language of E look a lot like semi-formal proofs
described in this paper. The language of E does not use functions and neither do we. Proofs
in Euclid’s Elements are constructive, mostly linear and, like authors noticed, Euclid only
occasionally uses proofs by cases or proofs by contradiction. Theorems of E do not allow
disjunctive conclusions, but disjunctive reasoning (case splits on atomic formula) in the
proof is allowed.

The number of steps in each semi-formal proof, the number of verified steps, and the
total verification time are given in Table 3. Although the approach did not verify all steps in
the semi-formal proofs, it was successful in handling the basic diagrammatic inferences in
Euclid’s proofs.

18There are in total eight proofs formulated in the axiomatic system E, but the last four proofs are proofs over
the angle sort.
19In the first step of the proof (in the axiomatic system E) previously proven Proposition I.1 is used, but it
is too difficult for automated theorem provers, and we do not use previously proven theorems as part of the
system at this point.
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Table 3 Number of steps in the semi-formal proof, the number of verified steps, and the verification time

Theorem name Semi-formal Number of Time (in seconds)

proof steps proven steps

Proposition 1 6 6 8

Auxiliary 1 1 1 7

Auxiliary 2 3 3 105

Proposition 2 17 13 130

6 From high school geometry to formal proofs

Just like the proofs in Euclid’s Elements, high school proofs sometimes rely on diagrams
and intuition as authors often present only the crucial part of the proof. While the proofs
in the formal axiomatic system E can be directly used in our system, the proofs from high
school textbooks first must be translated into the semi-formal proofs. The axiomatic system
that is used is Hilbert-like axiom system.

Hilbert’s axiomatic system Hilbert published one of the most influential books on geom-
etry, Foundations of Geometry (der Grundlagen der Geometrie) in 1899. His goal was
to create a formal system: “a complete and simple set of axioms and to deduce from
them the most important geometric theorems“ [21]. There are eleven editions of Hilbert’s
Grundlagen, containing a lot of significant changes and upgrades over the original.20

Hilbert considers three different sets of elements: points, lines, and planes, and estab-
lishes an axiomatic system based on those elements and their mutual relations. There are
five groups of axioms: Axioms of Incidence, Axioms of Order, Axioms of Congruence, Axiom
of Parallels, and Axioms of Continuity. Parts of Hilbert’s axiomatization use second order
logic, but in this paper we use only the first two groups of Hilbert’s axioms. They belong to
first order logic and are easily expressed in coherent logic.

The first group of Hilbert’s axioms describes the incidence relations between points,
lines, and planes. The second group of axioms describes the ordering of points using the
between concept. In most cases theorems that can be proved using those two groups of
axioms belong to coherent logic as well, or can easily be translated. We test the approach
on proofs of theorems found in geometry textbooks used in Serbian high schools [13, 33,
49] that are proved with the first two groups of Hilbert’s axioms.21 Those proofs are, for the
most part, easily transformed into the semi-formal proofs that can be verified by our system.

In later editions of Hilbert’s Grundlagen it is noted that “two points” are always distinct
points so the addition of non-degeneracy assumptions, that we mentioned earlier, is valid.
One of the necessary translations to coherent logic is transforming the sentence “there exists
one and only one x such that P(x) holds” into two sentences. In general (for complicated
formula P ) this sentence is not coherent, but in most cases in Euclidean geometry P is
actually a conjunction of first order atoms, and the following equivalence can be used:

∃!xP (x) ≡ ∃xP (x) ∧ (∀x∀yP (x) ∧ P(y) → x = y)

20This produced some inconsistencies in cases when the axioms were changed, but the proofs of the theorems
were not updated accordingly. Detailed discussion on Hilbert’s axiomatic system is beyond the scope of this
paper and will be presented in the separate paper.
21Hilbert’s theorems from the first two groups belong to the set of theorems analysed in this paper.
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Table 4 Relations in Hilbert’s axiomatic system

inc po l(A,L) point A is on line L

inc po pl(A, P ) point A is on plane P

inc l pl(L, P ) line L is on plane P

int l l(L1, L2) lines L1 and L2 intersect

int pl pl(P 1, P 2) planes P 1 and P 2 intersect

int l pl(L, P ) line L and plane P intersect

col(A, B, C) points A, B, and C are collinear

cop(A, B, C, D) points A, B, C, and D are coplanar

bet (A,B,C) point B lies between points A and C

Predicate symbols that we used to represent relations of Hilbert’s axiomatic system are
given in Table 4.

Here we will illustrate a translation of one theorem proof taken from an early high school
geometry textbook [33]. For the sake of readability, each step of the textbook proof is enu-
merated and presented in a new line (without the axioms and rules of inference that are
used).

Theorem I1 If a point A does not belong to a line p, there exists a unique plane that
contains both the point A and the line p.

Proof

1. The line p contains at least two points B and C.
2. Points A, B, and C are non-collinear.

2.1. Assume the opposite: If points A, B, C are collinear, they lie on the same line.
2.2. Points B and C lie on p, so point A will then lie on the line p as well.
2.3. This is a contradiction with the assumption of the theorem that point A does not

lie on p.

3. There exists a plane α that contains them.
4. All points of the line p lie on that plane.
5. If a plane β contains the point A and the line p,
6. then it contains points A, B, and C

7. and it is identical to the plane α.

The part of the proof that is using proof by contradiction is marked by indentation and
will not be used as part of the semi-formal proof, as we explained in the Section 3. This
theorem concludes that there exists a unique plane, so we formulate the following two
theorems and their semi-formal proofs22 (expressed using predicate symbols from Table 4):

Theorem 1 If a point A does not belong to a line p then there exists a plane α such that
the point A and the line p lie on that plane.

22Both semi-formal proofs were verified (and formal and readable proofs generated) in 11 seconds.
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0. assume [P,A] : (line(P) & point(A) & ninc_po_l(A,P))

1. let [B,C] : (point(B) & point(C) & B!=C & inc_po_l(B,P)

& inc_po_l(C,P))

2. have (ncol(A,B,C))

3. let [R] : (plane(R) & inc_po_pl(A,R) & inc_po_pl(B,R)

& inc_po_pl(C,R))

4. have (inc_l_pl(P,R) & inc_po_pl(A,R))

Theorem 2 If a point A does not belong to a line p, and there exist two planes α and β

such that the point A and the line p lie on both of them, then those two planes are equal.

0. assume [P,A,R1,R2] : (line(P) & point(A) & plane(R1)

& plane(R2) & ninc_po_l(A,P)

& inc_po_pl(A,R1) & inc_l_pl(P,R1) &

inc_po_pl(A,R2) & inc_l_pl(P,R2))

1. let [B,C] : (point(B) & point(C) & B!=C & inc_po_l(B,P)

& inc_po_l(C,P))

2. have (ncol(A,B,C))

3. have (inc_po_pl(A,R1) & inc_po_pl(B,R1) & inc_po_pl(C,R1) &

inc_po_pl(A,R2)& inc_po_pl(B,R2) & inc_po_pl(C,R2))

4. have (R1 = R2)

The set of theorems found in Serbian high school geometry textbooks is particularly well
suited for the approach described in this paper, as textbooks contain both easy and complex
proofs. The common problem with mathematical textbooks is that they often jump from
easy to difficult theorems too quickly. The level of detail varies in proofs for different theo-
rems. Some theorems are even stated without a proof, or with brief instructions from which
we can formulate only two or three semi-formal proof steps. That said, the experiments
presented in this paper show that our approach can be useful in those cases as well.

In general, for most theorems, textbook proofs were easily translated into the semi-
formal proofs that can be verified with our approach. Sometimes, a slight modification of
the textbook proof was needed. Theorems that state that ”there exists only one” are pro-
cessed by formulating two additional theorems. We processed two such examples. Adding
new proof steps for construction of new objects (naming of new objects) was performed
consciously and frequently. Proof steps that are using reasoning by cases are left out from
the semi-formal proof. This was done for three theorems.

The number of steps in each semi-formal proof, the number of verified steps, and the
verification time are given in Table 5. The set of axioms that was used contained either the
axioms of incidence alone, or the axioms of incidence and the axioms of order (depending
on the theorem). In both cases basic definitions used in Hilbert’s axiomatic systems were
added (definitions for collinearity, coplanarity, etc.). In 12 out of 18 semi-formal proofs, the
system successfully verified all the steps of the semi-formal proof. In the other 6, many indi-
vidual steps were verified as well. In total, out of the 65 automatically generated auxiliary
lemmas (that correspond to the semi-formal proof steps), our system automatically verified
56 (86%). On average it took 79 seconds to verify a semi-formal proof, validate the auto-
matically generated XML file, and translate it to formal documents in Isabelle and Coq, and
readable documents in English and Serbian.
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Table 5 Number of steps in semi-formal proof, number of verified steps, and verification time

Theorem number Semi-formal Number of Time (in seconds)

proof steps proven steps

1 4 4 5

2 4 4 6

3 3 3 5

4 2 2 79

5 1 1 14

6 2 2 5

7 17 17 126

8 1 0 125

9 1 1 5

10 1 1 5

11 2 2 73

12 8 8 96

13 1 1 5

14 9 6 213

15 3 2 126

16 1 0 159

17 2 1 134

18 3 1 127

In some cases the system does not verify all auxiliary lemmas, mostly when proofs of
those lemmas use a previously proven theorem. If automated provers fail, the current lemma
is added without a proof and labeled with sorry in Isabelle, and with Admitted in Coq. The
user can manually fill in the missing proof in the generated Isabelle or Coq file, or change
the semi-formal proof of the theorem and run the system again.

Sledgehammer We tested the Sledgehammer on the set of auxiliary lemmas automatically
generated by our system. We used the default Sledgehammer settings. For theorem proofs
in Hilbert’s axiomatic system, out of the 65 automatically generated lemmas, Sledgeham-
mer proved 59 (three more than our system). In some cases Isabelle automatically (without
the Sledgehammer) discovered that the goal (the current auxiliary lemma) could be solved
directly with an axiom. A few times Sledgehammer was confused by this and found the triv-
ial proof only after the automatically generated proof (found by our system) was run. We
classified those lemmas as successful. Sledgehammer gave the same results as our system
when tested on theorem proofs in Avigad’s axiomatic system.

7 Related work

Formalizing Hilbert’s geometry has been the subject of several papers. Dehlinger, Dufourd,
and Shreck showed, using the interactive theorem prover Coq, that many theorems from the
first two groups of Hilbert’s book “der Grundlagen der Geometrie” can not be proved using
the intuitionistic approach and without the rule of the excluded middle [12]. They also for-
mulated and verified weaker versions of Hilbert’s theorems in an intuitionistic setting, and
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later used them as part of the proof of the original theorem (the first step of the proof of the
original theorem was always some rule of the excluded middle). Later, Meikle and Fleu-
riot [30], and Scott and Fleuriot [45] showed, using interactive theorem prover Isabelle, that
the formalization of the first three groups of Hilbert’s axiomatics is not trivial. They pointed
out that many of Hilbert’s proofs rely on assumptions that were not stated in the proof, and
that some proofs even rely on a graphical presentation of the problem. The rules that they
used manipulate finite sets of collinear and planar points, instead of the usual primitives of
points, lines, and planes. But, they are still using just the elementary theory. Sets are used
just as a convenient representation. In this paper, we did not use such representation. They
identified a lot of missing steps in Hilbert’s proofs which initially resulted in very complex
proofs that showed little resemblance to the original ones. The introduction of sets simpli-
fied formal proofs and made them more similar to Hilbert’s proofs. They even concluded
that gaps in Hilbert’s proofs were suitable since they did not capture the essence of the
proofs.

The framework for automated theorem proving of mathematical knowledge was used
with Tarski’s axiomatic system. The framework is created by Stojanović-Ðurd̄ević, Nar-
boux, and Janičić, and was used in several experiments [51] with theorems from the first part
of the book on foundations of geometry: Metamathematische Methoden in der Geometrie,
by Wolfram Schwabhäuser, Wanda Szmielew, and Alfred Tarski [44]. The authors thor-
oughly analyzed Tarski’s axioms, definitions, and theorems, and expressed them in coherent
logic (which resulted in 238 theorems, starting with 179 theorems of plane geometry). Spe-
cial attention was paid to the negations, function symbols, and to the use of sets (as an
illustration, in Tarski’s book, lines are represented as sets of points). Careful comparison and
integration with the existing Coq formalization of the Tarski’s book [10, 35] was performed
(requiring to express auxiliary lemmas formulated in the Coq formalization into coherent
logic as well). In the first experiment, all the axioms, definitions, and theorems are listed in
the order they appear in the book that is being formalized. While proving the current con-
jecture, the set of all axioms, definitions, and theorems that precede the conjecture is used
by the framework. The authors showed that, in such manner, 37% of the theorems can be
completely automatically verified with formal proofs generated. The user can influence the
proving process by formulating additional auxiliary lemmas and carefully integrating them
within the set of theorems being proved. Auxiliary lemmas were taken from the existing Coq
formalization. The addition of auxiliary lemmas has the positive influence on the proving
process and rises the percentage of proven theorems to 42%. This approach gave promis-
ing results for the formalization of the whole theory. In most cases, the theorems from this
paper are too difficult for the (ATP/ArgoCLP) framework itself, so semi-formal proofs of
the theorems have to be formulated if we want to generate formal and readable proofs, like
we did in this paper.

Axiomatic system E, was created for automated verification of postulates from Euclid’s
Elements [2]. There are two computational proof checkers based on the language of E. Ben-
jamin Northrop implemented the E-proof-checker23 prover for this formal system [38].24

The user provides as input the objects that will be used in the proof of a conjecture followed
by a series of assertions involving the relations on those objects. The set of axioms of E is
divided into construction rules and inference rules. The E-proof-checker follows the same

23http://www.bennorthrop.com/e/e-proof-checker.php
24http://www.phil.cmu.edu/∼avigad/formal/paris2 merged.pdf

http://www.bennorthrop.com/e/e-proof-checker.php
http://www.phil.cmu.edu/~avigad/formal/paris2_merged.pdf
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idea and works in two phases. In the first phase, the prover verifies if all objects can be cre-
ated with the construction rules. In the second phase, inference rules are used without any
guidance. The prover will generate all possible objects and relations and, at the end, verify
if the conclusion of the conjecture is demonstrated. The downfall of this prover is that it
does not support metric assertions. The second proof checker for the language E is a prover
EuclidZ3 created by Kelvin Rojas [42]. This proof checker uses, as a backend, SMT solver
Z3 [34]. SMT solvers are particularly well-suited for metric inferences. While the E-proof-
checker verifies proofs in the language E, the EuclidZ3 does not parse Euclidean proofs.
The EuclidZ3 verifies proofs formulated using collection of Z3 definitions and functions.
Unlike the approach described in this paper, both of these proof checkers are created specif-
ically for the axiomatic system E and can not work with other axiomatic systems. Also,
neither of them generates formal proofs verifiable with interactive theorem provers.

Correcting inaccuracies and filling gaps in Euclid’s proofs was done by Beeson, Nar-
boux, and Wiedijk [3]. They developed a new axiomatic system and formulated and veri-
fied their proofs in interactive theorem provers HOL Light and Coq. The axiomatic system
that they use is very close to Euclid’s, and formulated proofs follow the ideas presented in
Euclid’s proofs. The language of the axiomatic system is similar to the language of Tarski’s
geometry (with almost all axioms formalized in a points-only language). They formalized
the first book of the Elements resulting with 213 theorems, starting with 48 of Euclid’s
propositions. They showed that formalizing the Elements is important but difficult and that
both axioms and proofs needed some corrections. They further showed that the order of the
propositions had to be changed, and in some cases the proofs deviated notably from the
original proofs.

Vyskočil, Kaliszyk, and Urban recently started a new project25 with the goal to auto-
formulate an informal mathematical language [25–27]. Their project’s scope is much larger
than the one presented in this paper. They are using large corpus of corresponding infor-
mal/formal formulas and propose the use of various machine learning techniques to train
semi-automated translation between informal and formal mathematics. In this paper, we
only use simple techniques of forward chaining with iterative deepening implemented in the
coherent logic prover ArgoCLP.

8 Conclusions and future work

The approach described in this paper can be used for automatic verification of informal
proofs in coherent logic. The system reads a linear semi-formal proof written in the language
that resembles mathematical formulas used in geometry textbooks, and generates formal
proofs and readable natural language proofs. At the moment, the system generates proofs in
languages of two interactive theorem provers (Isabelle and Coq) and two natural languages
(English and Serbian).

The primary goal of studying geometry in school is to introduce young students to a con-
ceptual framework for formulating and proving theorems. This framework helps to improve
logical thinking and proper reasoning which is applicable beyond the field of geometry
itself. We think that our simple approach can significantly aid in fulfilling this educational
objective while also being a foray into the field of interactive theorem proving. Even though

25https://www.researchgate.net/project/informal2formal

https://www.researchgate.net/project/informal2formal
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the language of semi-formal proofs is not trivial, we believe that it can easily be mastered
by the motivated students.

Both high school geometry and Euclid’s proofs were criticized for the same reason, and
as Jeremy Avigad et al. noted [1] there is a strong link between Euclid’s Elements and the
proofs used for educational purposes:

Over the centuries, the style of diagram-based argumentation of Euclid’s Elements
was held to be the paradigm of rigor, and presentations much like Euclid’s are still
used today to introduce students to the notion of proof.

The approach described in this paper helped with verifying 18 informal proofs found in
Serbian high school geometry textbooks, and 4 informal proofs from Euclid’s Elements,
which illustrates the potential of this project. Even though we analysed only a small number
of proofs in the axiomatic system E, we showed that this approach can be used for verifi-
cation of the basic diagrammatic inferences used in the Elements. Nevertheless, we should
be careful in making predictions considering that Euclid’s later postulates are noticeably
harder and will likely require additional tools.

The approach presented in this paper can be useful for mathematicians who are formalizing
parts of mathematical textbooks. Generated formal proofs can be used as part of a larger formali-
zation project and readable proofs can help with understanding an original textbook proof.

Reasoning by cases is currently not supported by the language of semi-formal proofs. In
the future, we plan to add proof steps for case splits (disjunctions) and assumptions, as is
already done for the coherent logic vernacular [47].

Since we want to keep the language universal, we decided to use mathematical formu-
las (in a TPTP-like language) to write the semi-formal proof. The alternative would be to
use a natural language with a restricted vocabulary. Adding this feature is planed for the
future, and it can be done for any natural language (with the corresponding translation to
mathematical formulas).

Textbook proofs verified in this paper usually rely on geometric diagrams. Those proofs
tend to follow the proof methods used by Euclid. In the future, we plan to add automated
generation of corresponding diagrams that help visualize the generated proofs. For this pur-
pose we plan to use the GCLC [22] program. GCLC is a tool for producing mathematical
illustrations by describing constructions and figures instead of drawing figures (which is
more commonly used in other dynamic geometry tools). GCLC has the option of export-
ing illustrations as LATEX files, so the generated diagrams can easily be added to our natural
language proofs. We also plan to develop additional XSLT style-sheets and add support
for languages of other interactive theorem provers (such as Mizar [56]), and other natural
languages (such as French and German). Also, we will continue to improve the existing
style-sheets with the goal of simplifying the generated proofs (formal and natural language)
so that they are even more human-friendly.

Acknowledgements We are grateful to the anonymous reviewers for the extremely helpful feedback on
the first version of the paper.

Appendix : Invocation of the system ArgoGeoChecker

– Detailed README.txt file can be found on the system’s web-page. Here we will
give just one example of the invocation of the system. Input file should be named
th name proof.txt and located in the folder theorems and proofs
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– System invocation:./ArgoGeoChecker axiom system th name proof.txt
– The shortcut has been added for Hilbert’s axiomatic system:

./ArgoGeoChecker I th 1 proof.txt
The option “I” can be used when we want to use just the first group of Hilbert’s axioms
for verification of the proof, and the option “II” can be used when we want to use the
first and the second group of Hilbert’s axioms together (definitions are always used).

– System will automatically generate (in the folder theorem and proofs) files for
all target languages (with extensions *.thy, *.v, *.tex, *.pdf).

– An example:

./ArgoGeoChecker I th_1_proof.txt

th_1_01.p| vampire| 0.03| 0.13| ax_I3a | 0.00||

th_1_02.p| vampire| 0.27| 0.21| ax_sym_ncol ax_D1a | 0.01||

th_1_03.p| e| 0.28| 0.13| ax_I4a | 0.02||

th_1_04.p| vampire| 0.16| 0.41| ax_I6 | 0.00||

Seconds: 6

Here we can see: the name of the auxiliary lemma that is proved — resolution the-
orem prover that found the smallest axiom set that the lemma can be proved with —
Vampire time — E time — set of axioms that was found — ArgoCLP time.

– List of semi-formal proofs in Hilbert’s axiomatic system (with the shorcut for the
specific set of Hilbert’s axioms):

./ArgoGeoChecker I th_1_proof.txt

./ArgoGeoChecker I th_2_proof.txt

./ArgoGeoChecker I th_3_proof.txt

./ArgoGeoChecker I th_4_proof.txt

./ArgoGeoChecker I th_5_proof.txt

./ArgoGeoChecker I th_6_proof.txt

./ArgoGeoChecker II th_7_proof.txt

./ArgoGeoChecker II th_8_proof.txt

./ArgoGeoChecker I th_9_proof.txt

./ArgoGeoChecker I th_10_proof.txt

./ArgoGeoChecker I th_11_proof.txt

./ArgoGeoChecker I th_12_proof.txt

./ArgoGeoChecker I th_13_proof.txt

./ArgoGeoChecker I th_14_proof.txt

./ArgoGeoChecker II th_15_proof.txt

./ArgoGeoChecker II th_16_proof.txt

./ArgoGeoChecker II th_17_proof.txt

./ArgoGeoChecker II th_18_proof.txt

– List of semi-formal proofs in the axiomatic system E:

./ArgoGeoChecker axiomatic_system/avigad_axioms.p

th_prop1_proof.txt

./ArgoGeoChecker axiomatic_system/avigad_axioms.p

th_prop1aux1_proof.txt

./ArgoGeoChecker axiomatic_system/avigad_axioms.p
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th_prop1aux2_proof.txt

./ArgoGeoChecker axiomatic_system/avigad_axioms.p

th_prop2_proof.txt
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47. Stojanović, S., Narboux, J., Bezem, M., Janičić, P.: A vernacular for coherent logic. In: S.W., other (eds.)
Intelligent Computer Mathematics - CICM 2014, Lecture Notes in Computer Science, vol. 8543.
Springer (2014)
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