
Formalization and Automation

of Euclidean Geometry

Vesna Pavlović, Sana Stojanović

Faculty of Mathematics, Belgrade

Spring School Geometry and Visualization,

Belgrade, Serbia, April 22, 2008.

Our Plan

• Formal theorem proving

• Formalization of Euclidean geometry

• Automation of Euclidean geometry

1

Our Plan

• Formal theorem proving

• Formalization of Euclidean geometry

• Automation of Euclidean geometry

2

What is a Proof?

To prove (Merriam-Webster)

• from Latin probare (test, approve, prove)

• to learn or find out by experience (archaic)

• to establish the existence, truth, or validity of (by evidence

or logic)

3

What is a Mathematical Proof?

In mathematics, a proof is a demonstration that, given certain

axioms, some statement of interest is necessarily true. (Wikipedia)

Example:
√

2 is not rational.

Proof: Assume there is r ∈ Q such that r2 = 2. Hence there are

mutually prime p and q with r = p
q . Thus 2q2 = p2, i.e. p2 is

divisible by 2. 2 is prime, hence it also divides p, i.e. p = 2s.

Substituting this into 2q2 = p2 and dividing by 2 gives q2 = 2s2.

Hence, q is also divisible by 2. Contradiction.

4

Nice, but...

• Still not rigorous enough for some.

– What are the axioms? What are the rules?

– How big can the steps be?

– What is obvious or trivial?

• Informal language.

Theorem: A cat has nine tails.

Proof: No cat has eight tails.

One cat has one more tail than no cat.

Hence it must have nine tails.
5

What is a Formal Proof?

• A derivation in a formal calculus

Λ1,Λ1, . . .Λk - axioms and previously proved theorems

Formal proof of a sentence P is a sequence of statements

S1, S2, . . . Sn

where:

1. Sn is P and one of the following holds:

2. • Si is one of Λ1,Λ1, . . .Λk

• Si follows from the previous statements by a
valid argument using the rules of reasoning

6

Example of a Formal Proof

Example: A ∧ B → B ∧ A is derivable in the following system:

X∈S
S`X (assumption) S∪{X}`Y

S`X→Y (impI)

S`X S`Y
S`X∧Y (conjI) S∪{X,Y }`Z

S∪{X∧Y }`Z
(conjE)

Proof:

1. {A, B} ` B (by assumption)
2. {A, B} ` A (by assumption)
3. {A, B} ` B ∧ A (by conjI with 1 and 2)
4. {A ∧ B} ` B ∧ A (by conjE with 3)
5. {} ` A ∧ B → B ∧ A (by impI with 4)

7

Importance of Having Formal Proofs

• Books and journals full with faulty proofs

(not necessarily faulty statements)

• Correctness of the software and hardware components

must be confirmed as formally as it can be

8

What is a Formal Verification?

Formal verification is the act of proving or disproving the correct-
ness of intended algorithms underlying a system with respect to
a certain formal specification or property, using formal methods
of mathematics.

Two approaches to formal verification:

1. Model checking
- a systematically exhaustive exploration
of the mathematical model

2. Logical inference
- using a formal version of
mathematical reasoning about the system

9

What is a Theorem Prover?

Implementation of a formal logic on a computer

• Fully automated (propositional logic)

• Automated, but not necessarily terminating (first-order logic)

• With automation, but mainly interactive (higher-order logic)

• Based on rules and axioms

• Can deliver formal proofs

10

Theorem Provers

Most important theorem provers:

• HOL Light (John Harrison)

• Isabelle/Isar (Lawrence C. Paulson, Tobias Nipkow,

Markus Wenzel)

• Coq (Benjamin Werner, Georgies Gonthier)

• Mizar (Andrzej Trybulec)

• ProofPower (Roger Jones, Rob Arthan)

11

Example: Kepler’s conjecture

Importance of formalization of the statements whose proofs are

not so obvious and trivial to understand

• Filling a large container with small equal-sized spheres

• Aim is to maximize the density of arrangement

– Random packing - 65%

– Cubic close packing π√
18

' 0.74048.

• Thomas Hales - proof by exhaustion

its formalization is estimated on 20 person-years

12

“The Hundred Greatest Theorems”

Paul & Jack Abad, 1999.

Criteria:

• place which the theorem holds in the literature

• quality of the proof

• unexpectedness of the result

Their formulation and formalization can be found on:
http://www.cs.ru.nl/~freek/100/

About 80% of these theorems are formalized
13

http://www.cs.ru.nl/~freek/100/

Isabelle - Basic Concepts

• Interactive theorem proving framework

• Successor of HOL theorem prover

• Natural deduction is the main deduction system used

• Includes mechanism for term rewriting and tableaux prover

• Used for confirming correctness of security protocols, prop-
erties of programming language semantics, formalizing the-
orems from mathematics and CS

14

Isabelle - Basic Concepts
Example:

• Mathematics: if x < 0 and y < 0 then x + y < 0

• Formal logic: ` x < 0 ∧ y < 0 → x + y < 0

variation: {x < 0; y < 0} ` x + y < 0

• Isabelle: lemma “ x < 0 ∧ y < 0 → x + y < 0”

variation: lemma: “[|x < 0; y < 0|] ⇒ x + y < 0”

• Isabelle/Isar: lemma

assumes “x < 0” and “y < 0”

shows “x + y < 0”

15

Isabelle - Basic Concepts
Isar formal proof language has been designed to satisfy quite

contradictory requirements: being both ’declarative’ and imme-

diately ’executable’

It is Isabelle’s language for readable proof documents

• it is possible to name proposition in definitions, lemmas, and

proofs by “name: proposition”

• the name ?thesis always stands for the current goal

• “..” is an abbreviation for by (rule name) if name refers to

one of the predefined introduction rules

• Intermediate steps of the proofs can be of the form:

from fact1 and fact2 . . . and propostions(show|have)proposition

16

Our Plan

• Formal theorem proving

• Formalization of Euclidean geometry

• Automation of Euclidean geometry

17

Formalization of Hilbert’s Axiomatic System

• Euclid’s “Elements”

• Hilbert’s “der Grundlagen der Geometrie”

• Formalization:

– Christophe Dehlinger, Jean-Francois Dufourd, Pascal Schreck:

Coq proof assistant

– Jacques Fleuriot, Laura Meikle:

Isabelle/Isar proof assistant

18

Formalization of Hilbert’s Axiomatic System (Fleuriot, Meikle)

• Procedure:

– declaring the three primitives as types: point, line and

plane

typedecl Point

– declaring basic relations

consts incident :: ”Point => Line => bool”

– defining additional relations

definition “colinear A B C == ? (l::Line). incident A l &

incident B l & incident C l”

– formulating axioms

axioms I1:“?(A::Point)(B::Point).line l A B & A ∼= B”

• Example in Isabelle/Isar (by Filip Marić)

http://www.matf.bg.ac.yu/~vesnap/spring_school/geometry.doc

19

http://www.matf.bg.ac.yu/~vesnap/spring_school/geometry.doc

Formalization of Tarski’s Axiomatic System

• Alfred Tarski’s axiomatic system

• Wolfram Schwabhauser:

Metamathematische Methoden in der Geometrie

• Formalization:

– Julien Narboux:

Coq proof assistant

20

Formalization Geometry in Proof Assistant (Narboux)

• Advantages:

– provides very high level of confidence in the proof gener-

ated

– permits to insert purely geometric arguments within other

kind of proofs

• Problem of the degenerated cases

– Source: axiomatic system

21

Why Tarski Axioms? (Narboux)

Advantages:

• They are simple (11 axioms and 2 predicates)

• Good meta-mathematical properties provide very high level

of confidence in the proof generated

• Generalization to other dimensions is easy

Drawbacks:

• Lemma scheduling is more complicated

• It is not well adapted to teaching

22

Proving Theorems

We can split methods for proving theorems in geometry into two

categories, these are:

1. Algebraic methods

2. Coordinate-free methods

23

Algebraic Methods

• Hilbert - decision method for a class of constructive geometry
statements in affine geometry

• Tarski (1951) - decision method for the theory of real closed
fields

• Collins (1974) - cylindrical algebraic decomposition (CAD)
algorithm

• Wu (1977) - a breakthrough in automated theorem proving

• Ritt (1984) - algebraic aspect of this method is known as
the Wu-Ritt-s characteristic set (CS) method

• Buchberger - Gröbner basis method

• Kapur (1997) - Dixon resultant approach

24

Coordinate-free Methods

• Chou, Gao, Zhang (1993) - area method

• Stiffer (1993) - Gröbner basis method

• Chou, Gao, Zhang (1994) - angle method

25

Solving Constructive Problems in Geometry

• generation of steps in geometric constructions

• solving hard problems in geometry

• producing effectively multiple and the shortest solutions of

geometric theorems

26

Solving Constructive Problems in Geometry

• Gelernter’s geometry machine (1959)

– backward chaining

– reliance on a diagram to guide a proof

• Gao, Chou (1998) - a global propagation method for auto-

mated generation of construction steps

– rc-configuration is a diagram that can be constructed with

ruler and compass

– forward & backward chaining

– using GIB (database containing all the properties of the

configuration that can be deduced using a fixed set of

geometric axioms)

27

Our Aim

• Idea of formalization of geometrical reasoning is quite new

• Instead of proving Hilbert’s theorems “manually” in Isabelle/CoQ

we have an idea of the automation of whole process

• Obtaining formal verification of the proofs

28

Our Plan

• Formal theorem proving

• Formalization of geometry

• Automation of Euclidian geometry

29

Automation of Euclidian Geometry

• We will study geometry as a formal system with different

systems of axioms

• Correctness which characterize the deduction process itself

will be satisfactory criterium

• Usage of some of the usual deduction systems (the ones that

are close to human intuition and available in Isabelle)

• Distinction between syntax (and process of formal deduction)

and semantics (meaning of deduction in terms of intuition)

30

EUCLID - the Geometry Theorem Prover

• Authors: Predrag Janicic and Stevan Kordic

• Proves theorems of geometry in an intuitive, geometrical way

• Proofs are presented in natural language form

• New form of the foundation of geometry and new classifica-
tion of geometrical axioms

• The prover EUCLID determines strict structure of axioms
and classification of axioms

31

Axiomatic of Euclidian geometry in system EUCLID

Basic symbols:

• Logic symbols: ∧, ∨, ¬, ⇒, ∀, ∃

• Variables: x1, x2, x3, . . .

• (Derived) constants a1, a2, a3, . . .

• Predicates:

S - point, L - line, P - plane

= - identical

I - incident

B - between

C or ∼= - congruence

32

Axiomatic of Euclidian geometry in system EUCLID

• Other types of geometrical objects (line segment, triangle,

circle, inside of a circle, etc.) could be introduced by defini-

tions

• This would lead to enhanced segment of ”traditional” geom-

etry that could be covered with this theory

• Justification for doing this:

– In this manner, without using theory of sets, we can cover

a large part of usual geometrical components

– Provide properties that certain objects should have

– Axiomatic system built in this manner would still preserve

independence of axioms

33

List of (primitive and defined) predicates in system EU-

CLID

Predicate We read
S(a) a is a point
L(b) b is a line
P(c) c is a plane
a = b a is identical to b
I(a, b) a is incident to b
B(a, b, c) b is between a and c
C(a, b, c, d) (a, b) matches (c, d)
(a, b) ∼= (c, d) (a, b) matches (c, d)

colin(a, b, c) a, b and c are colinear
copl(a, b, c, d) a, b, c and d are coplanar
intersect(a, b) a and b intersect

34

Types of axioms

• Basic axioms (initiation of types of geometrical objects and

range of basic relations) are used implicitly

• Axioms of equality

• Non-productive axioms

• Branching axioms

• Productive axioms

• Strongly productive axioms

35

Definitions that are used in axioms

• Collinear points

∀A∀B∀C∃a(colin(A, B, C) ⇒ (I(A, a) ∧ I(B, a) ∧ I(C, a)))

∀A∀B∀C∀a((I(A,a) ∧ I(B, a) ∧ I(C, a)) ⇒ colin(A, B, C))

• Coplanar points

• Intersection of lines

• Intersection of a line and a plane

• Intersection of planes

36

Basic axioms

∀x((S(x) ∧ ¬L(x) ∧ ¬P(x)) ∨ (¬S(x) ∧ L(x) ∧ ¬P(x)) ∨ (¬S(x) ∧
¬L(x) ∧ P(x)))

∀x∀y(¬(S(x)∧S(y))∧¬(L(x)∧L(y))∧¬(P(x)∧P(y)) ⇒ ¬(x = y))

∀x∀y(¬(S(x)∧L(y))∧¬(S(x)∧P(y))∧¬(L(x)∧P(y)) ⇒ ¬I(x, y))

∀x∀y∀z(¬S(x) ∨ ¬S(y) ∨ ¬S(z) ⇒ ¬B(x, y, z))

∀x∀y∀z∀u(¬S(x) ∨ ¬S(y) ∨ ¬S(z) ∨ ¬S(u) ⇒ ¬(x, y) ∼= (z, u))

37

Axioms of equality and consistency

∀x (x = x)

∀x ∀y (x = y ⇒ y = x)

∀x1∀x2 . . . ∀xn∀y (xi = y ∧ Φ(x1, x2, . . . , xi, . . . , xn)

⇒ Φ(x1, x2, . . . , y, . . . , xn))

38

Non-productive axioms

1. If point A incidents line p, and line p incidents plane φ, than

point A incidents plane φ

∀A∀p∀φ(I(A, p) ∧ I(p, φ) ⇒ I(A, φ))

2. In a plane φ there can be drawn through any point A, lying

outside of a straight line a, one and only one straight line

which does not intersect the line a. This straight line is called

the parallel to a through the given point A.

39

Branching axioms

1. Of any three points situated on a straight line, there is always

one and only one which lies between the other two

2. If A, B, C are three non-collinear points that are contained in

a plane φ, a line contained in φ and A is not contained in a,

and U is a point contained in a, where B(B, U, C), than line a

contains point V , for which holds B(C, V, A) or point W , for

which holds B(A, W, B)

40

Productive axioms

1. If two planes α and β have a point A in common, then they

have at least a second point B in common

2. Two distinct points A and B always completely determine a

line a

3. Three points A, B, C not situated in the same straight line

always completely determine a plane α

41

Strongly productive axioms

There exists four different non-coplanar points

∃X∃Y ∃Z∃U(X 6= Y ∧ X 6= Z ∧ X 6= U ∧ Y 6= Z ∧ Y 6= U ∧ Z 6=
U ∧ ¬copl(X, Y, Z, U))

42

Simplification of proof deduction, simple theorems

1. If point A is incident to a line a than there exists point B,

different from A, which also incidents a

2. If point A is incident to a plane α than there exists points B

and C incident to a plane α and A, B and C are not collinear

3. If different points A and B are incident to a plane α than

there exists point C incident to a plane α and A, B and C

are not collinear

43

Classification of structure of axioms

All axioms (basic and introduced), and also theorems and defi-

nitions, covered with EUCLID have one of the following forms:

∀x1∀x2 . . . ∀xn∃y1∃y2 . . . ∃ym(Φ(x1, x2, ..., xn) ⇒ (1)

Ψ(x1, x2, ..., xn, y1, y2, ..., ym)) (n, m ≥ 1)

∀x1∀x2 . . . ∀xn∃y1∃y2 . . . ∃ym(Φ(x1, x2, ..., xn) ⇒ (2)

Ψ1(x1, x2, ..., xn, y1, y2, ..., ym) ∨ Ψ2(x1, x2, ..., xn, y1, y2, ..., ym) ∨ ...

... ∨ Ψk(x1, x2, ...xn, y1, y2, ...ym)) (n, m ≥ 1)

44

Classification of structure of axioms

∀x1∀x2 . . . ∀xn(Φ(x1, x2, ..., xn) ⇒ Ψ(x1, x2, ..., xn)) (n ≥ 1) (3)

∃y1∃y2 . . . ∃ym(Ψ(y1, y2, ..., ym)) (m ≥ 1) (4)

where Φ, Ψ and Ψi are literals with variables x1, x2, ..., xn, apropos

y1, y2, ..., ym

45

Classification of structure of axioms

• Structure of the axioms and effectiveness of deduction of

proofs and nature of prover EUCLID motivated new classifi-

cation of geometrical axioms.

• By this classification, geometrical axioms are not divided (as

usual) to axioms of incidence, axioms of order, axioms of

congruence, axioms of parallels and axioms of continuity, so

they are not divided by their “topic” but by their structure

46

Priority of the axioms

• This arrangement of axioms, that was derived from concept
of prover EUCLID, naturally corresponds to form of struc-
tures of axioms that we mentioned above. Order of axioms
wasn’t determined exactly, but in regard to property of group
of axioms and through numerous experiments.

• Arrangement of axioms inside these groups is important for
effectiveness of deduction of proofs, but it doesn’t affect set
of theorems that prover EUCLID can prove.

• Strongly productive axioms are axioms that often produce
new objects. If we reduce its application we will increase
efficiency of proof deduction.

47

System for proof deduction

• Proof deduction was based on systems of syllogisms

• Predicate calculus (Leibniz)

• Calculus of reasoning (Boole)

• Concept notation (Frege, formal language and properties of
quantifiers, modus ponens)

• Axiomatic for predicate calculus (Post, Hilbert and Acker-
mann; proved property of completeness)

48

System for proof deduction

From there on, development of theory of proofs is consistent

with development of automated theorem proving

• Skolem, Herbrand (systems for automated theorem proving)

• Bet (tableau method)

• Robinson (method of resolution)

• Gentzen (natural deduction)

49

Systems of deduction of proof in prover EUCLID

• Rules of deduction (in bases of predicate calculus) used in
EUCLID are designed to be as close as they can to tradi-
tional, intuitive proofs

• Rules of deduction must be precise with minimum redun-
dance

• System of deduction is somewhere between Gentzen’s and
Hilbert’s concept

• Restriction - it can be used to prove theorems from just one
class written in concrete form

50

Forms of the theorem provable by EUCLID

• Sentences of form

∀x1∀x2 . . . ∀xn∃y1∃y2 . . . ∃ymΘ(x1, x2, . . . , xn, y1, y2, . . . ym)

will be written in short as: ∀~x∃~yΘ(~x, ~y)

• In prover EUCLID theorems that we prove have one of the

following forms:

∀~x∃~yΘ(~x, ~y)

∀~xΘ(~x, ~y)

∃~yΘ(~x, ~y)

• Notice that all axioms of this theory already have one of the

above forms.

51

Algorithms for automated theorem deduction

• Algorithm “British Museum”, based on successive syntactic

deduction of all formulas and checking whether the goal is

proven

• System “Logic Theory Machine”, involve heuristics which

steer “British Museum” algorithm according to structure of

theorem that is proved

• System “Geometry Machine”, for proving small class of ge-

ometrical axioms

52

Algorithms for automated theorem deduction

• One of the first systems for automated theorem proving,

Paul Gilmor (1960), based on Herbrand’s theorem and its

implications

– Very ineffective and only very simple axioms were provable

– Automated theorem proving was possible

• Method of resolution of Alan Robinson. Resolved some of
the problems that implied non effectiveness of Gilmor’s sys-

tem.

– Rule of resolution (replaced usual axioms and rules of de-

duction in predicate calculus)

– Involved new significant procedure - unification

– Increased number of theorems that could be proved

53

Automated theorem proving

• Systems for automated theorem proving based on method of
resolution (specific choice of axioms and clauses for resolu-
tion and numerous heuristics)

• Even with its improvements only simple theorem were prov-
able

• Some problems that emerged:

– Ineffectiveness

– Result was affirmative or negative answer to the question
whether given statement is theorem

• These were all uniform proof procedures. After that, re-
search went towards building specific systems specialized for
concrete theories and often, just parts of theory

54

Algorithm for proof deduction in prover EUCLID

• Axiomatic system is base of algorithm for proof deduction in
system EUCLID.

• Algorithm is independent from concrete computer implemen-
tation

• Algorithm covers one class of theorems

• In basic version, deduction of proofs is directed by classifica-
tion of axioms and their’s order inside groups

• Lots of space for heuristics

55

Algorithm for proof deduction in prover EUCLID

• Acceptable objects - notion derived from sentinel principle

used in the prover.

• At the beginning of the proof deduction, set of acceptable

objects is empty and during deduction set is expanded. This

extensibility is controlled with sentinel which disables “infinite

branches” in proof

• During proof deduction knowledge base is expanded. It con-

tains facts on objects which are generated during proof de-

duction

56

Algorithm for proof deduction in prover EUCLID

• Algorithm is partly based on “method of exhaustion”. In
order to maximally restrain induction of new geometrical ob-
jects and facts necessary for proof and in order to maximize
efficiency, axioms are divided into three groups and ranked
within a group.

• Generated proofs could be (automatically) optimized, so that
there are no redundant steps.

• Method used in EUCLID is “forward chaining” and is related
to Herbrand’s theorem. It is not very efficient but it enables
automatic deduction of many proofs that are currently being
produced manually.

57

Program EUCLID

• PROLOG version

• C version

• C++ version

58

Program EUCLID - C version

• Knowledge base is represented with set of arrays (one array

for positive and one for negative form of a predicate).

• Relations does not hold information on types of objects. Ex-

ample: I(1,2) and S(1) and L(2)

• One enumerator for all elementary objects (points, lines,

planes).

• For every array, index of last added fact is saved (LIFO list).

59

Program EUCLID - C version

• Static organization of data (advantage over dynamic - speed

of simple operations: adding new fact and erasing last added).

• Axioms are represented by functions (within whom adding

new facts in knowledge base and output of proof steps in

natural language is carried out).

• Axioms are hard-coded. We cannot insert new lemmas or

theorems into a system.

60

One of the axioms in C version of prover EUCLID

• If a point A lies on a line p, and line p lies on a plane α than

point A lies on a plane α

• int ax_n10()

{

int i1,i2;

int x,y,z;

for(i1=1;i1<=INC[0].index;i1++)

{

x=INC[i1].arg1; y=INC[i1].arg2;

for(i2=1;i2<=INC[0].index;i2++)

if (INC[i2].arg1==y)

{

61

z=INC[i2].arg2;

if (!inc(x,z))

{

add_inc(x,z);

sprintf(OUT,"If point %i lies on line %i

and ",x,y);

sprintf(OUT,"line %i lies on a plane %i, ",z,y);

sprintf(OUT,"than point %i lies on %i",x,z);

output(DEPTH,OUT);

return 1;

}

}

}

return 0;

}

Format of input file

If p and q are two lines that intersect than exists a plane which

contains them both:

premise

line(1)

line(2)

not_identical(1,2)

intersect(1,2)

theorem

plane(-1)

incident(1, -1)

incident(2, -1)

62

Format of input file

• Premise and theorem are obligatory.

• Constants that occur in theorem formulation are denoted

with natural numbers.

• Variables that are bounded by existential quantifier are de-

noted with negative numbers (prover tries to unify these

variables with inducted geometrical objects which satisfies

theorem)

63

Program EUCLID - C++ version

• Knowledge base is represented with class DataBase.

– Points, lines and planes are represented with separate

counters.

– Relations hold information on types of objects. Multiple

relations of incidence, equality, etc.

Example: I1(1,2) implies that 1 is a point and 2 is a line

• We do not have to check weather an object is in a base, we

just have to check if its number is less or equal of counter

of that type of object.

• We do not preserve properties as we did before. We just

store hashes of properties (since only two operations are ver-

ification of a property and insertion of new property).

64

Program EUCLID - C++ version

• Axioms and theorems are interpreted in the same manner:

class Statement{

vector<Property> _from; // premise

vector<Property> _have; // conclusion

Statement* _by; // statement which is applied

}

• Now we can, once a statement is proven, import it into a

base and use it as an axiom.

65

Program EUCLID - C++ version

• Ideas:

– Points, lines and planes can be represented as relations as

well

– Relations can be allowed to unify objects (because they

contain all needed information for unification)

– Change order of premise in theorem

Example:

Instead of usual order of premises:

L(1) || S(1) S(2) Diff(1,2) I1(1,1) I1(2,1)

we can arrange premises so that relations are next to the

elementary object they describe:

L(1) || S(1) I1(1,1) S(2) Diff(1,2) I1(2,1)

66

Program EUCLID - C++ version

Output of program:

• Natural language

• Isabelle/Isar

• Coq

67

