
Variable Neighbourhood
Decomposition Search for Mixed

Integer Programs

Jasmina Lazić 1, Nenad Mladenović 1, Dragan Urošević 2

1 Brunel University, West London, UK

2 Mathematical Institute, Serbian Academy of Sciences,

Belgrade, Serbia

Presentation Outline

• Introduction and motivation

• Relaxation Induced Neighbourhood Search (RINS)

• Variable Neighbourhood Decomposition Search

(VNDS)

• Local search within VNDS (Variable Neighbourhood

Descent)

• Computational Results

• Conclusion

Mixed Integer Program (MIP)

General mixed integer program can be formally defined as:

(P) min cTx (1)

Ax ≥ b (2)

xj ∈ {0, 1} ∀j ∈ B 6= ∅ (3)

xj ≥ 0, xj ∈ Z ∀j ∈ G 6= ∅ (4)

xj ≥ 0 ∀j ∈ C 6= ∅ (5)

where set of indices N = {1, 2, . . . , n} is partitioned into

three subsets (B,G,C), corresponding to binary, general

integer and continuous variables, respectively.

Solving MIPs

• MIPs are typically solved by using branch-and-bound

or branch-and-cut algorithm.

• A number of models is hard to solve to optimality

only by branch-and-bound/cut.

• This suggests applying local search techniques

(introducing neighbourhoods, intensification and

diversification steps).

Integrality vs. Optimality

• Incumbent solution: feasible with respect to

integrality constraints, but not optimal unless it is

the last and optimal integral solution.

• Linear relaxation solution: has the best possible

objective value, but is usually not feasible with

respect to integrality constraints.

Relaxation Induced Neighbourhood
Search (RINS)

• Recent metaheuristic proposed by Emilie Danna,

Edward Rothberg and Claude Le Pape from ILOG in

2004.

• Based on the fact that many variables in the

incumbent and in the continuous relaxation solution

have the same values.

• Focuses on the variables that differ in the incumbent

and in the continuous relaxation at the current node.

Outline of the RINS Algorithm

At a node of the global branch-and-cut tree, perform the

following steps:

1. Fix the variables that have the same values in the

incumbent and in the current continuous relaxation;

2. Set an objective cutoff based on the objective value

of the current incumbent;

3. Solve a sub-MIP on the remaining variables.

Variable Neighbourhood Search

• Metaheuristic proposed by N. Mladenović and

P. Hansen in Computers Oper. Res. 24: 1097–1100,

1997.)

• Based on the systematic change of neighbourhoods

within a local search.

Neighbourhoods in
Problem Solution Space

• Let d denote the distance metric in the solution

space X of the problem observed.

• The k-th neighbourhood of solution x ∈ X is usually

defined as the following set:

Nk(x) = {y ∈ X | d(x, y) ≤ k},

Basic VNS

Initialisation.

(1) Select parameters kmin, kmax and kstep for

neighbourhood exploration.

(2) Select the set of neighbourhood structures

Nk, for k = kmin, kmin + kstep, . . . , kmax.

(3) Find an initial solution x.

(4) Choose a stopping condition.

Main step.

Repeat until the stopping condition is met:

(1) Set k ← kmin.

(2) Repeat until k = kmax:

(a) Shaking. Generate x′ ∈ Nk(x) at random.

(b) Local search. Apply some local search

with x′ as initial solution. Denote with

x′′ so obtained local optimum.

(c) Move or not. If x′′ is better then x, move

there (set x ← x′′) and continue the search

in N1(x). Otherwise set k ← k + kstep.

Variable Neighbourhood Descent

(VND)

Initialisation.

(1) Select maximal neighbourhood size kmax.

(2) Select the set of neighbourhood structures

Nk, for k = 1, 2, . . . , kmax.

(3) Find an initial solution x.

Main step.

Repeat until the no improvement is obtained:

(1) Set k ← 1.

(2) Repeat until k = kmax:

(a) Neighbourhood exploration. Find the best

neighbour x′ of x, x′ ∈ Nk(x).

(c) Move or not. If x′ is better then x, move

there (set x ← x′) and continue the search

in N1(x). Otherwise set k ← k + 1.

Variable Neighbourhood Decomposition
Search (VNDS)

• Basic VNS remains difficult or long to solve very

large instances of problems.

• VNDS extends the basic VNS scheme into two-level

VNS scheme based upon the decomposition of the

problem.

Outline of the VNDS Algorithm

Initialisation.

(1) Set parameters kmin, kmax and kstep.

(2) Select the set of neighbourhood structures Nk.

(3) Find an initial solution x.

(4) Choose a stopping condition.

Main step.

Repeat until the stopping condition is met:

(1) Set k ← kmin.

(2) Repeat until k = kmax:

(a) Shaking. Generate x′ ∈ Nk(x) at random. Let y = x′\x.

(b) Local search in problem subspace. Apply some local search with

y as initial solution. Denote with y′ so obtained local optimum

and with x′′ = (x′\y) ∪ y′.

(c) Local search in the whole problem space. If x′′ is better than x,

apply some local search with x′′ as initial solution and denote

with x′′′ so obtained local optimum. Otherwise set x′′′ ← x′′.

(d) Move or not. If x′′′ is better then x, move there (set x ← x′′′)

and continue the search in N1(x). Otherwise set k ← k + kstep.

VNDS for MIPs

• Based on the idea first explored in RINS: that many

variables in the incumbent and in the continuous

relaxation values have the same values.

• Number of variables having the same values in both

solutions is used to define the decomposition scheme

within VNDS.

VNDS Algorithm for MIPs: Initialisation

I1) Find the continuous relaxation solution y.

I2) Find the first feasible mixed integer solution

x = (x1, x2, . . . , xm, xm+1, . . . , xn), x1, . . . , xm ∈ Z,

xm+1, . . . , xn ∈ R. Denote with fopt objective

function value.

I3) Set values for tmax (total running time allowed) and

tsub (time allowed for solving subproblem). Set

tstart = cpuT ime(), t = 0.

Main Step - Decomposition Initialisation

M1) Reorder x: Set x = (xi1 , xi2 , . . . , xim , xm+1, . . . , xn),

so that | xi1 − yi1 |≤| xi2 − yi2 |≤ . . . ≤| xim − yim |.
M2) Set z = (z1, z2, . . . zm, zm+1, . . . , zn) =

(xi1 , xi2 , . . . , xim , xm+1, . . . , xn).

M3) totDiff = m−max{k ∈ {1, . . . ,m} | xik − yik = 0},
kmin = [totDiff/10], kstep = kmin,

kmax = m, k = kmin.

M4) Fix values of z1, z2, . . . , zkmax−kmin
.

Set upperBound = fopt − 0.00001.

Main Step - Decomposition

M5) Repeat until (k ≥ kmax or t ≥ tmax)

D1) MIPSOLVE(tsub, upperBound, znext, fnext)

D2) Move or not.
if (fnext < fopt) then

a) Relax. Relax all fixed variables from z.
b) Local search in the entire problem space.

VND(tsub, upperBound, zcur, fcur).
c) Move. Set x = zcur, fopt = fcur. Go to step M1).

else
if (k + kstep > totDiff) then

kstep = max{[(kmax − k)/2], 1}
endif

endif

D3) Relax variables zkmax−k−1, zkmax−k−2, . . . , zkmax−k−kstep .

D4) k = k + kstep, tend = cpuT ime(), t = tend − tstart.

Entire Space Local Search (part I):
Distance in the MIP Solution Space

• Given two feasible solutions x and y of (P) we can

define distance between them as

∆(x, y) =
∑

j∈B∪G

| xj − yj |

• It is easy to see that, for binary MIPs, this distance

is identical to Hamming distance:

∆(x, y) =
∑

j∈S

(1− xj) +
∑

j∈B\S
xj,

where S = {j ∈ B | yj = 1}.

Entire Space Local Search (part II):

Neighbourhood Structures for Binary MIPs

• Let (P) be a binary MIP (G = ∅) and ∆ previously
defined distance in the solution space X of (P)

• The kth neighbourhood of any feasible solution x of (P)
is defined as:

Nk(x) = {y ∈ X | ∆(x, y) ≤ k},
i.e.

Nk(x) = {y ∈ X |
∑

j∈S

(1− xj) +
∑

j∈B\S
xj ≤ k}

• Nk(x) is obviously the set of all solutions of (P), which
differ from x in at most k binary variables.

Entire Space Local Search (III): VND for Binary MIPs

(1) Initialisation. Set proceed ←true, rhs ← 1, first ←false.

(2) while (proceed or elapsedTime < totalTimeLimit) do

timeAllowed ← min(nodeTimeLimit, totalTimeLimit− elapsedTime);

Add local branching constraint ∆(x, xcur) ≤ rhs;

Set upperBound ← fcur;

Set status ← MIPSOLVE(timeAllowed, upperBound, first, xnext, fnext);

switch status do

case “optSolFound”: reverse last local branching constraint into

∆(x, x cur) ≥ rhs + 1; xcur ← xnext; fcur ← fnext; rhs ← 1;

case “feasibleSolFound”:reverse last local branching constraint into

∆(x, x cur) ≥ 1; xcur ← xnext; fcur ← fnext; rhs ← 1;

case “provenInfeasible”:reverse last local branching constraint into

∆(x, x cur) ≥ rhs + 1; rhs ← rhs + 1;

case “noFeasibleSolFound”: proceed ← false;

end

end

Results
• Our code is written in C++ and built in Microsoft Visual Studio 2005

under Windows XP operating system.

• All experiments are run on Pentium 6 computer with 2.4GHz processor

and 4GB RAM.

• The data sets used are:

– 7 MIPLIB-3.0 instances mkc, swath, danoint, markshare1,

markshare2, arki001 and seymour

– 1 network design instance net12

– 2 crew scheduling instances biella1 and NSR8K

– 1 railway crew scheduling instance rail507

– 1 nesting instance glass4

– 2 telecommunication network design instances UMTS and van

– 2 rolling stock and line planning instances roll3000 and nsrand ipx

– 5 lot-sizing instances A1C1S1, A2C1S1, B1C1S1, B2C1S1 and tr12-30

– 4 railway line planning instances sp97ar, sp97ic, sp98ar and sp98ic

which is the standard benchmark for testing binary MIP solvers.

Table of Objective Values

Model Best published VNDS CPLEX without RINS RINS

mkc -563.85 -561.94 -563.85 -563.85

swath 467.41 480.12 509.56 524.19

danoint 65.67 65.67 65.67 65.67

markshare1 7.00 3.00 5.00 7.00

markshare2 14.00 10.00 15.00 17.00

arki001 7580813.05 7580814.51 7581076.31 7581007.53

seymour 423.00 425.00 424.00 424.00

NSR8K 20780430.00 20763500.00 163138974.32 93373309.04

rail507 174.00 174.00 174.00 174.00

glass4 1400013666.50 1587513455.18 1575013900.00 1460007793.59

van 4.84 5.09 5.35 5.09

biella1 3065084.57 3065005.78 3065729.05 3071693.28

UMTS 30122200.00 30125601.00 30133691.00 30122984.02

net12 214.00 214.00 255.00 214.00

roll3000 12890.00 12930.00 12890.00 12899.00

nsrand ipx 51360.00 51200.00 51360.00 51360.00

a1c1s1 11551.19 11503.44 11505.43 11503.44

a2c1s1 10889.14 10958.42 10889.14 10889.14

b1c1s1 24544.25 24646.77 24908.63 24544.25

b2c1s1 25740.15 25997.84 25869.40 25740.15

tr12-30 130596.00 130596.00 130596.00 130596.00

sp97ar 662671913.92 665917871.36 670484585.92 662892981.12

sp97ic 429562635.68 429129747.04 437946706.56 430623976.96

sp98ar 529814784.70 531080972.48 536738808.48 530806545.28

sp98ic 449144758.40 451020452.48 454532032.48 449468491.84

Table of Gap Values (in %)

Model VNDS CPLEX without RINS RINS

mkc 0.34 0.00 0.00

swath 2.72 9.02 12.15

danoint 0.00 0.00 0.00

markshare1 0.00 66.67 133.33

markshare2 0.00 50.00 70.00

arki001 0.00 0.00 0.00

seymour 0.47 0.24 0.24

NSR8K 0.00 685.70 349.70

rail507 0.00 0.00 0.00

glass4 13.39 12.50 4.29

van 5.17 10.60 5.13

biella1 0.00 0.02 0.22

UMTS 0.01 0.04 0.00

net12 0.00 19.16 0.00

roll3000 0.31 0.00 0.07

nsrand ipx 0.00 0.31 0.31

a1c1s1 0.00 0.02 0.00

a2c1s1 0.64 0.00 0.00

b1c1s1 0.42 1.48 0.00

b2c1s1 1.00 0.50 0.00

tr12-30 0.00 0.00 0.00

sp97ar 0.49 1.18 0.03

sp97ic 0.00 2.05 0.35

sp98ar 0.24 1.31 0.19

sp98ic 0.42 1.20 0.07

average: 1.02 34.48 23.04

Table of Running Times (in seconds)

Model VNDS CPLEX without RINS RINS

mkc 9003.01 18000.47 18000.53

swath 3176.81 1283.23 557.93

danoint 3360.01 18000.63 18000.66

markshare1 370.81 10018.84 18000.58

markshare2 15448.03 3108.12 7294.20

arki001 4684.51 338.56 27.03

seymour 9150.68 18000.59 18000.69

NSR8K 34601.77 36001.68 36001.48

rail507 1524.28 662.26 525.25

glass4 625.44 3732.31 4257.54

van 1331.75 18001.10 18959.00

biella1 4452.02 18000.71 18000.61

UMTS 6836.78 18000.75 18000.59

net12 129.85 18000.75 18000.64

roll3000 2585.47 18000.86 14193.31

nsrand ipx 10595.37 13009.09 11286.30

a1c1s1 1437.73 18007.55 18000.64

a2c1s1 2357.14 18006.50 18002.35

b1c1s1 5346.82 18000.54 18000.64

b2c1s1 133.19 18003.44 18000.80

tr12-30 1581.02 7309.60 4341.23

sp97ar 18025.51 11841.78 8498.12

sp97ic 3084.88 1244.91 734.96

sp98ar 4367.67 1419.13 1051.53

sp98ic 676.43 1278.13 1031.02

average: 5795.48 12290.86 12270.71

Conclusion
• We have managed to improve effectiveness on the largest instances such as NSR8K and

biella1, proving that decomposition is successful in tackling the large problems.

• In the overall, we have improved the best known results in 7 out of 25 cases.

• Apart from being successful in solving large instances, VNDS has also proved to

achieve the best results for instances markshare1 and markshare2, belonging to the

class of hard small 0-1 problems.

• VNDS significantly decreases the running time performance: its average running time

is only 5795.48s, while the average time of RINS is 12270.71s, and of CPLEX without

RINS 12290.86s.

• VNDS also sustains much higher stability than RINS or CPLEX without RINS: its

average gap is only 1.02%, as opposed to 23.04% RINS gap and 34.48% gap of

CPLEX without RINS.

• Future work: more improvement could be expected if we applied VNDS method at the

other nodes of branch-and-bound tree and not just at the root node.

