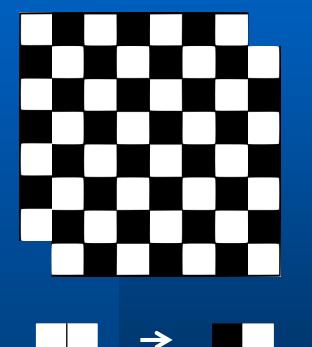
The Interaction of Representation and Reasoning

University of Belgrade 16th May 2013

Alan Bundy informatics University of Edinburgh

Agents must have World Models

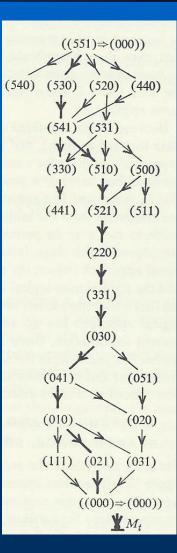

Internal model needed:

- to predict the effects of actions during planning.
- Including models of other agents.
- Called ontologies.
- World infinitely rich.
 - Any model is an approximation.
 - Must find sweet spot, trading expressivity against efficiency.

Each agent will have an ontology tuned to its role.

- Appropriate representation is key to effective problem solving, e.g., reduce search.
- However, agents must communicate.
 - So ontologies must be aligned.

Representation as the Key 1



John McCarthy's Mutilated Checkerboard: Can we tile board with dominos?

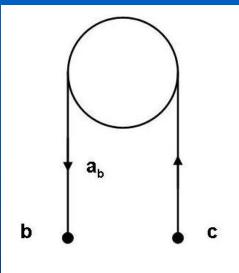
Colouring of domino removes search from solution.

Representation as the Key 2

Saul Amarel study of missionaries and cannibals. How change of representation affects search space size. Successive representations significantly reduce search.

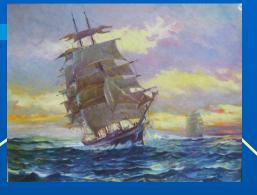
Representation as the Key 3

Andy deSessa's Bouncing Ball: Where does energy go at moment of impact?


Essential to idealize ball as having extent.

Automated Representation Formation

- Representation must be tuned to goal and environment.
- Design representation to suit problem.
- Abstract relevant information from sensory input: idealization.
- Decide what is negligible and can be ignored.


Formation of Representations 1

- Mecho Project: solve mechanics problems stated in English.
 - Project with George Luger, Martha Palmer, Bob Welham, Chris Mellish, Rob Milne.
- Real world objects idealized automatically.
 - particles, inextensible strings, light pulleys.
- Idealization fossilized:
 - inferred from problem type.

Idealisation

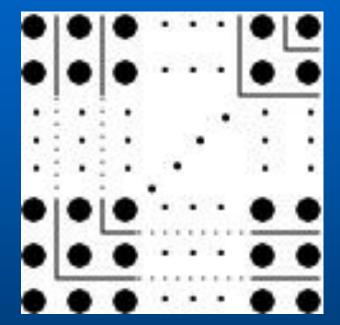
Relative Velocity Problem

How to idealise this ship? Archimedes Principle Problem

Particle on plane

15 May 2013

Container in fluid


Formation of Representations 2

- Eco project: assist users to construct ecological model.
 - Project with Bob Muetzelfeldt, Mike Uschold, Dave Robertson.
- Heuristics for suggesting idealizations.
- Representation formation as interaction between human and machine.

Formation of Representations 3

- Diamond Project: constructs 'proofs without words'.
 - PhD project of Mateja Jamnik.
- n² idealized as both
 - *n* rows of n dots
 - *n* ell shapes
- Idealizations chosen via human interaction.

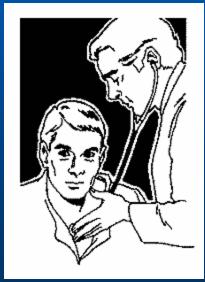
 $n^2 = 1 + 3 + ... + 2n - 1$

Ontologies must Evolve.

Ontologies must evolve:

- as world changes;
- as problems change;
- to communicate with other agents.
- Most ontologies built by designer and static.

 Ontology evolution must be dynamic and automated:


- Consider emergency response;
- Multiple agencies must inter-operate.

Repairing Faulty Representations

Representation is a fluent! – Need to react to changing world,

- and changing goals,
- and other agents' ontologies,
- and inconsistencies.
- Faulty representation can be signalled by inference failure.
- Need to diagnose and repair.

Both beliefs and language.

Triggers for Representational Change

Can prove false conjectures.
Fail to prove true conjectures.
Reasoning inefficient.

Analysis of failure can suggest appropriate repair.

Ontology Evolution 1: Coin-in-the-slot

- Parking meter requires £5.
- Must be in coins.

• Not including new 50p.

Or bent or underweight coins.

• But some foreign coins will work.

Ontology Evolution 2: Motherhood

Motherhood: Mother(person)

- MaternalGrandMother(p) = Mother(Mother(p))
- Types: natural, step, adopted, foster, surrogate, egg donor,
 - Mother must be predicate, not function.
- Split Relations: StepMother(mum,child)
- Add Argument: Mother(mum,child,kind)
 - Mother(gm,m,k₁) & Mother(m,gc,k₂) \rightarrow MaternalGrandMother(gm,gc,Combine(k₁,k₂))

Ontology Evolution 3: Latent Heat

 Latent heat: change of heat content without change of temperature.

- Black discovered in 1761.

- Before Black, heat and temperature conflated.
- Separation of conflated concepts necessary precursor to discovery.
- Conflation of "morning star" and "evening star" into "Venus" in reverse direction.

Representation Evolution in Programs

Cynthia: analogical editor for ML programs.

- Edit old ML program into new one.
- PhD project of Jon Whittle.
- Powerful commands to change names, arguments, types, recursion, etc.
- Commands edit synthesis proof, from which program is rederived.
 - Ensures well-formedness, coverage and termination of synthesised program.

length([])=0

length([H|T])=length(T)+1

Example: Length to Size

Initial Program: length of list. Change to count size of tree. Change data-type to trees. - Automatically changes recursion. - Flags up now faulty code. • Correct flagged code. count(leaf(S))=1 - Checks termination. count(node(L,R))=count(L)+count(R) Change name of program to count

Representation Evolution for Agents

 ORS: repairs faulty ontologies by analysing failed multi-agent plans.

- PhD project of Fiona McNeill.
- Changes include abstraction and refinement of language,
 - e.g., adding arguments, changing predicates.
- Allows agents with slightly different ontologies to communicate.
- Technology essential for Semantic Web

Example: Hotel Bill

- Planning agent (PA) forms plan,
 but it fails.
- Failing action: Pay(PA, Hotel, £200).
 Hotel agent refuses to accept money.
- Surprising question precedes failure.
 - Money(PA, £200, Credit_Card)
 - Where PA expected Money(PA, £200)
- Change binary *Money* to ternary.

Representation Evolution in Physics

- GALILEO: evolves physical theories.
 Project with Michael Chan & Jos Lehmann.
- Experimental evidence may contradict known theory.
- Using ontology repair plans to capture common patterns.
 - Where's my stuff?
 - Inconstancy.
 - Unite.

 Case studies include: dark matter, latent heat, Boyle's Law, etc.

Example: Dark Matter

- Mismatch between prediction and observation:
 - orbital velocities of stars in spiral galaxies.
- Split galaxy into:
 - visible stars;
 - invisible dark matter;
 - and their total.

- Alternative solution via MOND:
 - gravity depends on relative acceleration.

Representation Evolution in Maths

• HR Program creates new concepts and conjectures from examples.

- PhD project of Simon Colton.
- TM Program uses HR, Otter and Mace to repair faulty mathematical ontologies.
 PhD project of Alison Pease.
- TM methods based on Lakatos "Proofs and Refutations".

Example: Faulty Conjecture

- TPTP: non-theorem in Ring Theory. $- \forall x, y. \ x^2 \times y \times x^2 = e.$
- Mace: finds 7 examples and 6 counterexamples.
- HR: invents new concept: $\forall z. z^2 = z + z$.
- TM: applies Lakatos's Strategic Withdrawal.
- Otter: proves conjecture for all rings with above property.

Conclusion

- Formation of representation must be under machine control.
 - To deal with multiple agents, changing world.
- Representational change triggered, for instance, by reasoning failures.
 - Language changes as well as belief revision.
- Major challenge for next half century.