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„After running this process on 100,000 CPU workers for 72 h, we
obtained roughly 500 million synthetic proof examples. We reformat
the proof statements to their canonical form (for example, sorting
arguments of individual terms and sorting terms within the same
proof step, etc.) to avoid shallow deduplication against itself and
against the test set. At the end, we obtain 100 million unique
theorem–proof examples. A total of 9 million examples involves at
least one auxiliary construction. We find no IMO-AG-30 problems in
the synthetic data. On the set of geometry problems collected in
JGEX17, which consists mainly of problems with moderate difficulty
and well-known theorems, we find nearly 20 problems in the
synthetic data. This suggests that the training data covered a fair
amount of common knowledge in geometry, but the space of more
sophisticated theorems is still much larger.”



Rules

What is the starting point?

1. perp A B C D, perp C D E F, ncoll A B E => para A B E F   
2. cong O A O B, cong O B O C, cong O C O D => cyclic A B C D   
3. eqangle A B P Q C D P Q => para A B C D     
4. cyclic A B P Q => eqangle P A P B Q A Q B    
5. eqangle6 P A P B Q A Q B, ncoll P Q A B => cyclic A B P Q   
6. cyclic A B C P Q R, eqangle C A C B R P R Q => cong A B P Q  
7. midp E A B, midp F A C => para E F B C     
8. para A B C D, coll O A C, coll O B D => eqratio3 A B C D O O   
9. perp A B C D, perp E F G H, npara A B E F => eqangle A B E F C D G H 
10.eqangle a b c d m n p q, eqangle c d e f p q r u => eqangle a b e f m n r u 
11.eqratio a b c d m n p q, eqratio c d e f p q r u => eqratio a b e f m n r u 
12.eqratio6 d b d c a b a c, coll d b c, ncoll a b c => eqangle6 a b a d a d a 
13.eqangle6 a b a d a d a c, coll d b c, ncoll a b c => eqratio6 d b d c a b a c c 
14.cong O A O B, ncoll O A B => eqangle O A A B A B O B    
15.eqangle6 A O A B B A B O, ncoll O A B => cong O A O B   

https://github.com/google-deepmind/alphageometry/blob/main/rules.txt



16.cong O A O B, ncoll O A B => eqangle O A A B A B O B
17.eqangle6 A O A B B A B O, ncoll O A B => cong O A O B
18.circle O A B C, perp O A A X => eqangle A X A B C A C B
19.circle O A B C, eqangle A X A B C A C B => perp O A A X
20.circle O A B C, midp M B C => eqangle A B A C O B O M
21.circle O A B C, coll M B C, eqangle A B A C O B O M => midp M B C
22.perp A B B C, midp M A C => cong A M B M
23.circle O A B C, coll O A C => perp A B B C
24.cyclic A B C D, para A B C D => eqangle A D C D C D C B
25.cyclic A B C D, para A B C D => eqangle A D C D C D C B
26.midp M A B, perp O M A B => cong O A O B
27.cong A P B P, cong A Q B Q => perp A B P Q
28.cong A P B P, cong A Q B Q, cyclic A B P Q => perp P A A Q
29.midp M A B, midp M C D => para A C B D
30.midp M A B, para A C B D, para A D B C => midp M C D
31.eqratio O A A C O B B D, coll O A C, coll O B D, ncoll A B C, sameside A O C B O D => para A B C D
32.para A B A C => coll A B C

Rules



33. midp M A B, midp N C D => eqratio M A A B N C C D
34. eqangle A B P Q C D U V, perp P Q U V => perp A B C D
35. eqratio A B P Q C D U V, cong P Q U V => cong A B C D
36. cong A B P Q, cong B C Q R, cong C A R P, ncoll A B C => contri* A B C P Q R
37. cong A B P Q, cong B C Q R, eqangle6 B A B C Q P Q R, ncoll A B C => contri* A B C P Q R
38. eqangle6 B A B C Q P Q R, eqangle6 C A C B R P R Q, ncoll A B C => simtri A B C P Q R
39. eqangle6 B A B C Q R Q P, eqangle6 C A C B R Q R P, ncoll A B C => simtri2 A B C P Q R
40. eqangle6 B A B C Q P Q R, eqangle6 C A C B R P R Q, ncoll A B C, cong A B P Q => contri A B C P 

Q R
41. eqangle6 B A B C Q R Q P, eqangle6 C A C B R Q R P, ncoll A B C, cong A B P Q => contri2 A B C 

P Q R
42. eqratio6 B A B C Q P Q R, eqratio6 C A C B R P R Q, ncoll A B C => simtri* A B C P Q R
43. eqratio6 B A B C Q P Q R, eqangle6 B A B C Q P Q R, ncoll A B C => simtri* A B C P Q R
44. eqratio6 B A B C Q P Q R, eqratio6 C A C B R P R Q, ncoll A B C, cong A B P Q => contri* A B C P 

Q R
45. para a b c d, coll m a d, coll n b c, eqratio6 m a m d n b n c, sameside m a d n b c => para m n a b
46. para a b c d, coll m a d, coll n b c, para m n a b => eqratio6 m a m d n b n c

Rules



How Alphageometry Solves Problems

•Deductive Reasoning (DD): The system starts by applying geometric rules 

to draw new conclusions. For example, it might deduce that two lines, AB and 

CD, are parallel.

•Algebraic Reasoning (AR): The information deduced by DD, such as "AB is 

parallel to CD," is then translated into algebraic form. In this case, it means 

that the slopes of lines AB and CD will be set as equal in a matrix of equations 

managed by AR.

•Algebraic Processing: The system uses methods like Gaussian elimination 

to manipulate these equations and find new relationships between variables. 

These new relationships are then passed back to the deductive part (DD).

•Repetitive Process: This process of passing conclusions back and forth 

between DD and AR continues until the system can't make any more new 

deductions (when the "deduction closure" stops expanding).



Our paper shows that language models can learn to 
come up with auxiliary constructions from synthetic 
data, in which problem statements and auxiliary 
constructions are randomly generated together and 
then separated using the traceback algorithm to 
identify the dependency difference. 



Additional constructs used in solving IMO tasks

IMO 2006 P6 
Construct point Q as the midpoint of BI. 
Construct point S as the midpoint of IH2. 

IMO 2004 P1
Construct point K such that KM = KN. 

Construct point L as the intersection of circles (K, A) 

and (O, A).



Additional constructs 
• Construct point X as the midpoint of segment AB

• Construct point X as the mirror of A through B.

• Construct point X as the intersection of circles (O, A) and (O1, A).

• Construct point X as the circumcenter of triangle ABC.

• Construct point X as the orthocenter of triangle ABC.

• Construct point X such that XA = XB. 

• Construct point X such that AB = BX and AX is perpendicular to BC.

• Construct point X such that AX = BX and <CAX = <XCA.

• Construct point X such that AB = CX and AX = CB.

• Construct point X such that AB is parallel to CX and AX is parallel to CD.

• Construct point X as the foot of A on line BC.



• Construct point X such that AB = BX and AX is perpendicular to BC.

A

B

X

C



Construct point X such that AX = BX and <CAX = <XCA



Construct point X such that AB = CX and AX = CB



Construct point X such that AB is parallel to CX and AX is parallel to CD



Sample tasks: IMO 2000 P1
Original:

Two circles G1 and G2 intersect at two points M and N. Let AB be the line tangent to these circles at
A and B, respectively, so that M lies closer to AB than N. Let CD be the line parallel to AB and passing
through the point M, with C on G1 and D on G2. Lines AC and BD meet at E; lines AN and CD meet at
P; lines BN and CD meet at Q. Show that EP = EQ.



Sample tasks: IMO 2000 P1
Original:

Two circles G1 and G2 intersect at
two points M and N. Let AB be the
line tangent to these circles at A
and B, respectively, so that M lies
closer to AB than N. Let CD be the
line parallel to AB and passing
through the point M, with C on G1
and D on G2. Lines AC and BD
meet at E; lines AN and CD meet
at P; lines BN and CD meet at Q.
Show that EP = EQ.

Translated (in paper):

Let A and B be any two distinct points.
Define point G1 such that AB is
perpendicular to AG1. Define point G2 such
that AB is perpendicular to BG2. Define point
M as the intersection of circles (G1, A) and
(G2, B). Define point N as the intersection of
circles (G1, A) and (G2, B). Define point C on
circle (G1, A) such that AB is parallel to CM.
Define point D on circle (G2, B) such that AB
is parallel to DM. Define point E as the
intersection of lines AC and BD. Define point
P as the intersection of lines AN and CD.
Define point Q as the intersection of lines
BN and CD. Prove that EP = EQ





Sample tasks: IMO 2000 P1

Alphageometry:

a b = segment a b; 
g1 = on_tline g1 a a b; 
g2 = on_tline g2 b b a; 
m = on_circle m g1 a, on_circle m g2 b; 
n = on_circle n g1 a, on_circle n g2 b; 
c = on_pline c m a b, on_circle c g1 a; 
d = on_pline d m a b, on_circle d g2 b; 
e = on_line e a c, on_line e b d; 
p = on_line p a n, on_line p c d; 
q = on_line q b n, on_line q c d 
? cong e p e q



Sample tasks: IMO 2004 P5AOriginal (in paper):

In a convex quadrilateral ABCD, the diagonal BD bisects
neither the angle ABC nor the angle CDA. The point P lies
inside ABCD and satisfies <PBC = <DBA and <PDC = <BDA.
Prove that AP=CP given ABCD is a cyclic quadrilateral.

Original: Prove that ABCD is a cyclic quadrilateral if and

only if AP = CP.

Translated:

Let ABC be a triangle. Define point O as the circumcenter of
triangle CBA. Let D be any point on circle (O, A). Define point
P such that <ABD = <PBC and <ADB = <PDC. Prove that AP =
CP

Alphageometry:
a b c = triangle a b c;
o = circle o a b c;
d = on_circle d o a;
p = on_aline p b c a b d, on_aline p d c a d b
? cong a p c p

Figure by Alphageometry



Sample tasks: IMO 2004 P5A
Step 1. AO = BO, AO = DO and BO = CO ⇒ A, B, C, D are cyclic. 

Step 2. A, B, C, D are cyclic ⇒ <BAD = <BCD and <BAC = <BDC. 

Step 3. AO = BO, AO = DO and BO = CO ⇒ CO = DO. 

Step 4. CO = DO ⇒ <CDO = <OCD. 

Step 5. BO = CO ⇒ <BCO = <OBC. 

Step 6. <BAD = <BCD, <ABD = <PBC, <BCO = <OBC, <ADB = 
<PDC and <CDO = <OCD ⇒ by angle chasing: <BOD = <BPD. 

Step 7. <BOD = <BP D ⇒ B, D, O, P are cyclic. 

Step 8. B, D, O, P are cyclic ⇒ <BDP = <BOP.  

Step 9. AO = BO and BO = CO ⇒ AO = CO. 

Step 10. AO = CO ⇒ <ACO = <OAC. 

Step 11. AO = BO ⇒ <ABO = <OAB. 

Step 12. <BAC = <BDC, <BAD = <BCD, <ABO = <OAB, <ACO = 
<OAC, <BCO = <OBC, <ADB = <PDC and <BDP = <BOP ⇒ by 
angle chasing: OP is the bisector of <AOC. 

Step 13. AO = CO and OP is the bisector of <AOC ⇒ AP = CP

https://www.cut-the-knot.org/pythagoras/IMO2004-5.shtml



My tasks

1.  a b c = triangle a b c; d = on_pline d c b a, on_pline d b c a ? equangle a b c c d a

2. a b = segment; c = on_tline c a b a; d = on_tline d b b a, on_tline d c b a ? eqdistance 
d a c b

3. a b c = triangle a b c; d = midpoint d a b; e = foot e b c d; f = foot f a c d ? eqdistance 
a f e b

4. c b a = triangle c b a; d = parallelogram c b a d; o = circumcenter o a d b; l = 
intersection_lc l c o d; k = intersection_lc k b o c; n = mirror n a o ? eqdistance n k c n

https://www.tandfonline.com/eprint/MKJWRQFEGGEA6HN3RRWB/full?target=10.1080/0020739
X.2024.2377724#d1e288



My task

a b c = triangle a b c; 
d = midpoint d c b; 
e = midpoint e c a; 
f = on_bline f a c, on_bline f c b; 
g = intersection_ll g a d b e; 
h = foot h b a c; i = foot i a b c; 
j = intersection_ll j a i b h 
? coll j g f



Citations from the article

This auxiliary construction can be found quickly with the knowledge of Reim’s theorem, which is 
not included in the deduction rule list used by the symbolic engine during synthetic data 
generation.  Including such high-level theorems into the synthetic data generation can greatly 
improve the coverage of synthetic data and thus improve auxiliary construction capability. 
Further, higher-level steps using Reim’s theorem also cut down the current proof length by a 
factor of 3.

AlphaGeometry constructs point K to materialize this axis, whereas humans simply use the 
existing point R for the same purpose. This is a case in which proof pruning itself cannot remove 
K and a sign of similar redundancy in our synthetic data.

This human proof uses four auxiliary constructions (diameters of circles W1 and W2) and high-
level theorems such as the Pitot theorem and the notion of homothety. These high-level
concepts are not available to our current version of the symbolic deduction engine both during
synthetic data generation and proof search. Again, this suggests that enhancing the symbolic
engine with more powerful tools that IMO contestants are trained to use can improve both the
synthetic data and the test-time performance of AlphaGeometry.



The Pitot theorem in geometry states
that in a tangential quadrilateral the
two pairs of opposite sides have the
same total length.

Pitot theorem

https://en.wikipedia.org/wiki/Pitot_theorem



(Reim’s Theorem). Choose points A, B, X, Y on circle ω1 and let C and D 
be points on AX and BY . Then AB || CD if X, Y, C, D are concyclic.



AlphaGeometry excels at solving problems involving cyclic 
quadrilaterals, with cyclic points appearing in 24 out of 25 

solved tasks.
This suggests that the system is particularly strong when 

working with such geometric structures. However, this 
raises the possibility that the tasks were selected to play to 
the system’s strengths. It's conceivable that a different set 
of problems, without reliance on cyclic figures, could be 

more challenging for AlphaGeometry but potentially 
solvable by other provers.
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