machine learning for hand prosthetics (and more)

barbara **CAPUTO**¹, claudio **CASTELLINI**², gerd **HIRZINGER**³, luo **JIE**¹, giorgio **METTA**^{2,4}, francesco **ORABONA**¹, giulio **SANDINI**^{2,4}, patrick **VAN DER SMAGT**³

¹ IDIAP, martigny, switzerland
 ² LIRA-Lab, university of genova, italy
 ³ German Aerospace Research Center, oberpfaffenhofen, germany
 ⁴ Italian Institute of Technology, genova, italy

www.neurobotics.org

- robotic artifacts driven by humans (HBS), e.g.
 - intelligent prostheses
 - intelligent teleoperation platforms
- ...where by intelligent we mean semiautonomous and/or adaptive
- solution: *learn* models of complex actions, e.g., reaching, grasping, etc. that can be used by HBSs

autumn '07

www.neurobotics.org

- in intelligent prosthetics:
 - guess what the patient wants his prosthesis to do
- in teleoperated reaching and grasping:
 - guess when the master wants to grasp
 - guess how the master wants to grasp
 - guess what the master wants to grasp

outline

application of machine learning to an emg-controlled hand prosthesis indoor robotic navigation human reaching and grasping some optimisations (on the road) uniform sampling in the input space linear independence in the feature space

emg-driven hand prosthesis

problem

high dexterity, but

- □ little possibility of *control* by the patient: what interface?
- □ we focus upon *non-invasive* interfaces, particularly upon

forearm surface electromyography

can a mechanical hand be swiftly driven using the emg?

setup

- 10 Ottobock emg electrodes
- □ 1 SpaceControl force/torque sensor
- 4 fingertip sensors
- □ detect *type* of grasps
- detect *force* involved in the grasp

7

autumn '07

emg (2)

- a very badly conditioned signal
- affected by a number of factors:
 - 1. (long-term) inter-arm differences
 - 2. (long-term) arm postures and movements
 - 3. (short-term) muscular fatigue, sweat
 - (medium-term) electrode displacement, muscle cross-talk
- how to take into account all these problems?

emg (3)

- how to take into account all these problems?
 - 1. (neglected) one subject only, able-bodied
 - (neglected) relaxed on a table, fixed position
 - 3. three-and-a-half minutes of activity (one *session*)
 - three sessions form a group; electrodes replaced between groups
- all in all, 30 sessions in 10 groups across 2 days

autumn '07

methods

feed-forward neural network (classification, regression)

- sigmoidal activation
- one hidden layer w/10 neurons
- backprop
- support vector machine (classification, regression)
 - gaussian kernel
- locally weighted projection regression (regression only)
 - online, incremental

svc cross-session accuracy

 A_{ij} is the classification accuracy of model trained upon session *i*, tested on session *j*. graphs refer to day 1 – day 2 is analogous.

uniformisation

full training sets diag: 98.73% ± 0.39% non-diag: 73.23% ± 14.29% uniform training sets diag: 95.52% ± 1.21% non-diag: 74.53% ± 13.70%

what makes it hard?

average minimum sample set distance:

$$D_{ij} = \frac{1}{|S_j|} \sum_{s_j \in S_j} \min_{s_i \in S_i} ||s_j - s_i||^2$$

- \square D_{ij} is strongly correlated to A_{ij} (Pearson coefficient: -0.60)
- analogous results with nn and on regression (all approaches)
- what if we adjoin good models and then train on this new model?

autumn '07

best models

best models on day 1, classification accuracy (left) and regression NRMSE (right)

autumn '07

intermission (1)

- information is there, one only has to dig and find it!
- distance is the key
- need a mechanical way of building good models
- on-line version of uniformisation:
 - check wheter a new sample is far away from the current training set
 - if so, use it
 - otherwise, ignore it

growth of a training set

on-line accuracy

18

as the distance grows... (1)

as the distance grows... (2)

20

as the distance grows... (3)

21

autumn `07

conclusions

- problem is solved so far!
- now, gather more data to take arm movement into account
 - the online uniformisation seems a promising way to keep training sets small and effective
- then, control the hand, and lastly...
- \Box ...try it on a patient.

learning to recognise places

- two mobile robots gather images of a complex building in different conditions of lighting, camera position, settings
 they are then asked
 - to recognise the places they've been to

learning to recognise places

growth: the size of the models reaches a maximum value and then stops (left pane, finite kernel) or it grows much less (right pane, infinite kernel). the accuracy of the machines is exactly the same.

learning to recognise places

accuracy: one can obtain massively smaller models, if accuracy is allwed to degrade by a maximum of 4%.

autumn '07

what is I.i. in the feature space?

recall your I year linear algebra:

$$\Delta = \min_{\mathbf{d}} \left\| \sum_{j \in \mathcal{B}} d_j \phi(\mathbf{x}_j) - \phi(\mathbf{x}_{l+1}) \right\|^2$$

In real life, you need to check whether ∆ is less than some η (linearly dependent) or greater than it (linearly independent)

autumn '07

what is l.i. in the feature space?

$$\Delta_i \leq \eta \iff 1 - K(\mathbf{x}_{l+1}, \mathbf{x}_i)^2 \leq \eta$$

$$\Leftrightarrow K(\mathbf{x}_{l+1}, \mathbf{x}_i) \geq \sqrt{1 - \eta}$$

$$\Leftrightarrow \exp\left(-\gamma ||\mathbf{x}_{l+1} - \mathbf{x}_i||^2\right) \geq \sqrt{1 - \eta}$$

$$\Leftrightarrow ||\mathbf{x}_{l+1} - \mathbf{x}_i||^2 \leq -\frac{1}{2\gamma} \log(1 - \eta)$$

$$\Box \text{ in general, ignore } \mathbf{x}_{l+1} \text{ if } K\text{-close to } \mathbf{x}_i$$

□ if *K* is gaussian, then ignore x_{l+1} if close to x_i ... does this ring a bell?

autumn '07

intermission (2)

"When computers are applied to solve a practical problem it is usually the case that the method of deriving the required output from a set of inputs can be described explicitly. [...] As computers are applied to solve more and more complex tasks, however, situations can arise when there is no known method for computing the desired output from a set of inputs, or where that computation may be very expensive."

[Cristianini & Shawe-Taylor, An introduction to Support Vector Machines, 2000]

autumn '07

- human subjects look at objects on a monitor and simulate the act of grasping
- □ by monitoring the user's *gaze* and *arm motion*, guess when he wants to grasp
- consider an adequate time window of gaze variance and arm velocity

comparison: Support Vector Machines vs. a simple decision tree

autumn '07

accuracy: how well do we guess the subject's intention?

compactness: how large are the models obtained?

ml for hand prosthetics (and more)

autumn '07

□SVMs build excellent models of the user's intention to grasp:

- accurate
- small (i.e., fast and suitable for online applications)
- the problem is easy in the feature space, not necessarily in the input space!
- Iresearch about (functional) biological plausibility is ongoing

learning how to grasp

learning how to grasp

accuracy: how well do we guess the subject's grasping style? show the system the beginning of the trajectories (22 joints + 6 position/orientation) and figure out the final position

- allows for a precise prediction of
 - hand position: 0.5in
 - hand orientation: 2.5°
 - hand posture: 7.5°
- with a reasonable advance:
 - hand position: 200msecs.
 - hand orientation: 120msecs.
 - hand posture: 90-200msecs. (depending on the object)

learning how to grasp

affordance: knowing a priori the object will uniformly improve the error, at no additional computational overhead.

conclusions

- Image: minimize the second second
- those models can be trasferred to humanoid platforms (but not only to them)
- they can be employed in aiding the disabled
- Iots of lovely maths behind it!

thank you!