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www.neurobotics.org

� robotic artifacts driven by humans 
(HBS), e.g.
� intelligent prostheses

� intelligent teleoperation platforms

� …where by intelligent we mean semi-
autonomous and/or adaptive

� solution: learn models of complex 
actions, e.g., reaching, grasping, etc. 
that can be used by HBSs
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www.neurobotics.org

� in intelligent prosthetics:

� guess what the patient 
wants his prosthesis to do

� in teleoperated reaching 
and grasping:

� guess when the master 
wants to grasp

� guess how the master 
wants to grasp

� guess what the master 
wants to grasp



autumn ‘07 ml for hand prosthetics (and more) 4

outline

� application of machine learning to

� an emg-controlled hand prosthesis

� indoor robotic navigation

� human reaching and grasping

� some optimisations (on the road)

� uniform sampling in the input space

� linear independence in the feature space
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emg-driven hand prosthesis
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problem

� high dexterity, but

� little possibility of control by the 
patient: what interface?

� we focus upon non-invasive
interfaces, particularly upon

� forearm surface electromyography

� can a mechanical hand be swiftly 
driven using the emg?
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setup

� 10 Ottobock emg electrodes

� 1 SpaceControl force/torque sensor

� 4 fingertip sensors

� detect type of grasps

� detect force involved in the grasp
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emg (1)

� in principle, non-linearly related to the force applied 
by a muscle
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emg (2)

� a very badly conditioned signal

� affected by a number of factors:
1. (long-term) inter-arm differences

2. (long-term) arm postures and 
movements

3. (short-term) muscular fatigue, sweat

4. (medium-term) electrode displacement, 
muscle cross-talk

� how to take into account all these 
problems?
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emg (3)

� how to take into account all these 
problems?
1. (neglected) one subject only, able-bodied

2. (neglected) relaxed on a table, fixed 
position

3. three-and-a-half minutes of activity (one 
session)

4. three sessions form a group; electrodes 
replaced between groups

� all in all, 30 sessions in 10 groups 
across 2 days
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methods

� feed-forward neural network (classification, 
regression)
� sigmoidal activation

� one hidden layer w/10 neurons

� backprop

� support vector machine (classification, 
regression)
� gaussian kernel

� locally weighted projection regression 
(regression only)
� online, incremental
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svc cross-session accuracy
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Aij is the classification accuracy of model trained upon 
session i, tested on session j. graphs refer to day 1 –
day 2 is analogous.

Aij =
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uniformisation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

 

sessions

 

m
o
d
e
ls

30

40

50

60

70

80

90

100
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

 

sessions

 
m

o
d

e
ls

30

40

50

60

70

80

90

100

full training sets
diag: 98.73% ± 0.39%

non-diag: 73.23% ± 14.29%

uniform training sets
diag: 95.52% ± 1.21%

non-diag: 74.53% ± 13.70%
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what makes it hard?

� average minimum sample set distance:

� Dij is strongly correlated to Aij (Pearson 
coefficient: -0.60)

� analogous results with nn and on regression 
(all approaches)

� what if we adjoin good models and then 
train on this new model?
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best models
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intermission (1)

� information is there, one only has to 
dig and find it!

� distance is the key

� need a mechanical way of building 
good models

� on-line version of uniformisation:
� check wheter a new sample is far away 

from the current training set

� if so, use it

� otherwise, ignore it
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growth of a training set
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expected to 
come to a 
halt 
eventually...
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on-line accuracy
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growing testing set

full testing set

black line 
says: point 
by point, 
we’re finding 
what you 
need.

red line 
says: we 
aren’t going 
to miss 
anything.
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as the distance grows... (1)
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as the distance grows... (2)

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
50

55

60

65

70

75

80

85

90

95

100

a
c
c
u

ra
c
y
 (

%
)

 

 

Support Vector Machine

Neural Network

accuracy 
decreases 
linearly.



autumn ‘07 ml for hand prosthetics (and more) 21

as the distance grows... (3)
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linearly.

for d=0.53, 
error is 
12.12%, and 
the training 
set has 77 
samples 
over 
153.000!
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conclusions

� problem is solved so far!

� now, gather more data to take arm 
movement into account

� the online uniformisation seems a 
promising way to keep training sets small 
and effective

� then, control the hand, and lastly...

� ...try it on a patient.
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learning to recognise places

� two mobile robots 
gather images of a 
complex building in 
different conditions 
of lighting, camera 
position, settings

� they are then asked 
to recognise the 
places they’ve been 
to
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learning to recognise places
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learning to recognise places

0 2 4 6 8 10 12 14 16
65

70

75

80

85

90

95

Training Step

C
la

s
s
if
ic

a
ti
o
n
 R

a
te

 (
%

)

 

 

  Fixed−partition

  Memory−controlled

  OISVM, η=0.01

  OISVM, η=0.017

  OISVM, η=0.025

0 2 4 6 8 10 12 14 16
0

100

200

300

400

500

600

700

800

900

Training Step

N
u
m

b
e
r 

o
f 
S

u
p
p
o
rt

 V
e
c
to

rs

 

 

  Fixed−partition

  Memory−controlled

  OISVM, η=0.01

  OISVM, η=0.017

  OISVM, η=0.025

accuracy: one can obtain massively smaller models, if accuracy is 
allwed to degrade by a maximum of 4%.



autumn ‘07 ml for hand prosthetics (and more) 26

learning more efficiently

� OISVM: Online Independent Support Vector 
Machines keep models small by exploiting 
linear independence in the feature space:

� check whether a new sample is
� if so, use it
� otherwise, ignore it.

� suited for online learning, where
� data appear out-of-the-blue with no possible 

reordering and/or statistics
� data flow is potentially endless

� no approximation involved, or able to tune 
the approximation
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what is l.i. in the feature space?

� recall your I year linear algebra:

� in real life, you need to check whether ∆ is 
less than some η (linearly dependent) or 
greater than it (linearly independent)
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what is l.i. in the feature space?

� in general, ignore x
l+1

if K-close to x
i

� if K is gaussian, then ignore x
l+1

if close to 

x
i
... does this ring a bell?
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intermission (2)

“When computers are applied to solve a practical 
problem it is usually the case that the method of 
deriving the required output from a set of inputs 
can be described explicitly. […] As computers are 
applied to solve more and more complex tasks, 
however, situations can arise when there is no 
known method for computing the desired output 
from a set of inputs, or where that computation 
may be very expensive.”

[Cristianini & Shawe-Taylor, An introduction 
to Support Vector Machines, 2000]
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learning when to grasp

� human subjects look at objects on a 
monitor and simulate the act of 
grasping

� by monitoring the user’s gaze and arm 
motion, guess when he wants to grasp

� consider an adequate time window of 
gaze variance and arm velocity
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learning when to grasp
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learning when to grasp
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learning when to grasp

compactness: how large are the models obtained?
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learning when to grasp

�SVMs build excellent models of the 
user’s intention to grasp:
�accurate

�small (i.e., fast and suitable for online 
applications)

�the problem is easy in the feature 
space, not necessarily in the input 
space!

�research about (functional) biological 
plausibility is ongoing
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learning how to grasp
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learning how to grasp
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learning how to grasp

� allows for a precise prediction of

�hand position: 0.5in

�hand orientation: 2.5°

�hand posture: 7.5°

� with a reasonable advance:

�hand position: 200msecs.

�hand orientation: 120msecs.

�hand posture: 90-200msecs. (depending 
on the object)
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learning how to grasp
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affordance: knowing a priori the object will uniformly improve the 
error, at no additional computational overhead.
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conclusions

� ml will teach your machines useful 
concepts such as human grasping, 
reaching, intentions

� those models can be trasferred to 
humanoid platforms (but not only to 
them)

� they can be employed in aiding the 
disabled

� lots of lovely maths behind it!



thank you!


