
HoTT

The Univalence Axiom in Dependent Type
Theory

Marc Bezem, lectures based on 1 and 2

1The Univalent Foundations Program, Homotopy Type Theory,
https://homotopytypetheory.org/book/

2Thierry Coquand, Théorie des Types Dépendants et Axiome d’Univalence,
Séminaire Bourbaki, 66ème année, 2013-2014, no 1085

Spring 2018

https://homotopytypetheory.org/book/

HoTT

Introduction

Overview of Logics
Logic Types ∀∃-domains

1-sorted FOL I n → B (opt. I n → I) I

k-sorted FOL [I1| · · · |Ik]n → B (. . .) I1, . . . , Ik
HOL (later) T ::= B | I | (T→T) any T

DTT (later) Π-types, U (universes),
inductive types

any A : U

I First-order logic: predicate logic (e.g., set theory ZFC)

I I is the type of individuals, B of propositions

I 1-sorted FOL is usually presented untyped

I In 1-sorted FOL types are left implicit, apart from arity

I E.g., in ∃x .∀y .¬E (y , x) quantification is over I , and E (y , x),
¬E (y , x), ∀y .¬E (y , x), ∃x . ∀y .¬E (y , x) are all of type B

I In k-sorted FOL types are explicitly given in the signature

HoTT

Introduction

Higher-order Logic (Church 1940)
I Types: I (individuals), bool (propositions), and if A,B are

types, then also A→ B (these types are called simple types)
I Terms are classified by their types, e.g.,

I c : I
I f : I → I
I f (c) : I
I P : bool
I Q : I → bool (‘propositional function’)
I → : bool → (bool → bool)
I ¬ : bool → bool
I P → ¬Q(f (c)) : bool
I ∀I : (I → bool)→ bool (universal quantifier over I)
I (∀I Q) : bool , also denoted ∀x :I . Q(x)

I We also have, e.g., ∃I , ∀I→bool , ∃I→I for quantification over
I , over unary predicates, and over unary functions, respectively

I In fact, we have ∀A,∃A for any type A: HOL

HoTT

Introduction

Higher-order Logic (Cntd)

I Inference system defines the ‘theorems’ of type bool

I Natural semantics in set theory: bool = {0, 1}, I a set

I Example: we can express equality EqA(t, u) : bool as

(∀P : A→ bool . P(t)→P(u)) : bool

I Exercise: prove that EqA is an equivalence relation for any A

I Refinement: prove symmetry of EqA without using the law of
the excluded middle

I Moral of the exercise: higher-order quantification is powerful

HoTT

Introduction

Extensionality Axioms in HOL, anticipating UA
I Pointwise equal functions are equal:

(∀x : A. EqB(f (x), g(x)))→ EqA→B(f , g)

I Equivalent propositions are equal:

((P → Q) ∧ (Q → P))→ Eqbool(P,Q)

I Neither of these axioms is provable in HOL (but they are true
in the set-theoretic semantics)

I Univalence Axiom (UA): ‘equivalent things are equal’
(the meaning of ’equivalent’ depends on the ’thing’)

I UA is not true set-theoretically, since sets can be ‘equivalent’
without being equal. This is vague, but can be made precise
by taking sets to be ‘equivalent’ when they are in bijective
correspondence (same cardinality). Another example will
come later.

HoTT

Introduction

Dependent Type Theory, Π-types

I Limitation of HOL: not natural to define, e.g., algebraic
structure on an arbitrary type; DTT can express this.

I Every mathematical object has a type, even types have a type:
a : A, A : U0, U0 : U1, . . ., the Ui are called universes (U)

I Fundamental in DTT: family of types B(x), x : A; that is,
for every a : A we have B(a) : U (so, B has type A→ U0)

I Context: x1 : A1, x2 : A2(x1), . . . , xn : An(x1, ..., xn−1)

I Example: n : N, x : R(n), y : R(n) in n-dim LinAlg

I If B(x), x : A a type family, then Πx :A.B(x) is the type of
dependent functions f (x) = b in context x : A, that is, b and
its type may depend on x , f (a) = (a/x)b : B(a) if a : A

I Example: 0 : Πn:N.R(n), 0(n) is n-dimensional zero vector

I Actually, A→ B is Πx :A.B(x) with B(x) = B

HoTT

Introduction

Σ-types and algebraic structure

I If B(x), x : A type family, then Σx :A.B(x) is the type of
dependent pairs (a, b) with a : A and b : B(a)

I Actually, A× B is Σx :A.B(x) with B(x) = B

I A type of semigroups can be defined in DTT as (=G , equality
on G , will be explained later):

ΣG :U .Σm:G → G → G .Πx , y , z :G .m(x ,m(y , z)) =G m(m(x , y), z)

HoTT

Introduction

Representation of Logic in DTT

I Curry-Howard-de Bruijn: formulas as types, (constructive)
proofs as programs (see Sørensen&Urzyczyn, Elsevier, 2006)

I Example: f (x , y) = x for x : A, y : B, then f : A→ (B → A)

I Curry, 1958: f is a proof of the tautology A→ (B → A)

I Modus ponens: if f : A→ B, a : A, then f (a) : B

I Similarly, g(x , y , z) = x(y(z)) (composition) is a proof of

(B → C)→ ((A→ B)→ (A→ C))

I Breakthrough in FOM: proofs as first-class citizens (!!!)
Constructive proofs can be executed as functional programs.

I Profound influence on computer science, constructive
mathematics, computational linguistics

HoTT

Introduction

Representation of Logic in DTT (ctnd)

I A family of types B(x), x : A represents a unary predicate

I Truth (or rather: provability) is represented by inhabitation

I Universal quantification ∀x :A. B(x) by Πx :A.B(x)

I Implication A→ B by, indeed, A→ B (= Πx :A.B!)

I Existential quantification ∃x :A. B(x) by Σx :A.B(x)

I A ∧ B by A× B = Σx :A.B(x) with constant B(x) = B

I A ∨ B is represented by disjoint sum A + B (next slide)

I ⊥ is represented by the empty type N0 (next slide)

I Negation ¬A is represented by A→ N0

I NB: Σ and + are stronger than in ordinary logic (explain ...)

HoTT

Introduction

Inductive Types

I A + B is inductively defined by two constructors
inl : A→ (A + B), inr : B → (A + B)

I How to destruct objects inl(a), inr(b)? Definition by cases!

I Destruction: h : Πz :A + B.C (z) can be defined given
f : Πx :A.C (inl(x)) and g : Πy :B.C (inr(y)):

h(inl(x)) = f (x) h(inr(y)) = g(y)

I Moral: inl(a), inr(b) are the only objects of type A + B

I For constant C (z) = C this is Gentzen’s ∨-elimination:
f : A→ C , g : B → C define h : A + B → C

I In words: if we can prove C from A, and from B, then we can
prove C from A + B

I Extra in DTT: p : A + B can be used in C (p)

HoTT

Introduction

Inductive Types (ctnd)

I Also inductively: 0 : N and if n : N, then S(n) : N

I How to destruct numerals Sk(0)? Recursion and induction!

I Destruction: f : Πn:N.C (n) can be defined given z : C (0)
and s : Πn:N. (C (n)→ C (S(n))):

f (0) = z f (S(n)) = s(n, f (n))

I Moral: numerals Sk(0) are the only objects in N

I For constant C (n) = C this is primitive recursion

I For non-constant C (n): inductive proof of ∀n:N. C (n)

I Moral: primitive recursion is the non-dependent version of
induction

HoTT

Introduction

Inductive Absurdity

I N0, the empty type or empty sum, representing false or
absurdity, is inductively defined by no constructors

I Destruction: h : Πz :N0.C (z) can be defined by zero cases,
presuming nothing, h is ‘for free’ (induction principle for N0)

I For constant C (z) = C this is the Ex Falso rule N0 → C

I For non-constant C (z): refinement of Ex Falso, used elegantly
by VV to prove Πx , y :N0. EqN0(x , y) (for EqN0 : next slide)

I Negation: ¬A = (A→ N0)

I N1 (aka Unit) is the inductive type with one constructor, N2

(aka Bool) with two constructors, and so on

HoTT

Introduction

Inductive Equality

I EqA(x , y) (equality, Martin-Löf), in context A : U , x , y : A,
inductively defined by 1a : EqA(a, a) for all a : A (diagonal!)

I Since EqA(x , y) is itself a type in U , we can iterate:
EqEqA(x ,y)(p, q) is equality of equality proofs of x and y

I Homotopy interpretation: EqA(x , y) as path space,
EqEqA(x ,y)(p, q) as higher path space, and so on

I Beautiful structure arises: an ∞-groupoid

I Footnote (opinion): a miracle, unintended by Martin-Löf

I Discussion: a discovery comparable to the countable model of
ZF, or to non-Euclidean geometries (without changing the
theory)

HoTT

Introduction

Laws of Equality

I (1a : EqA(a, a) for all a : A) + induction + computation

I We actually want transport, for all type families B:

transpB : B(a)→ (EqA(a, x)→ B(x))

and based path induction, for all type families C :

bpiC : C (a, 1a)→ Πp:EqA(a, x).C (x , p)

plus natural equalities like transpB(b, 1a) = b

I bpiC is provable by induction, transpB special case of bpiC
I Also provable: Peano’s 4-th axiom ¬EqN(0, S(0))

I Proof: define recursively B(0) = N, B(S(n)) = N0 and
assume p : EqN(0, S(0)). We have 0 : B(0) and hence
transpB(0, p) : N0.

HoTT

Introduction

Groupoid

I THM [H+S]: every type A is a groupoid with objects of type
A and morphisms p : EqA(a, a′) for a : A, a′ : A

I In more relaxed notation (only here with = for Eq):

1. . � . : x = y → y = z → x = z
2. .−1 : x = y → y = x
3. p = 1x

� p = p � 1y

4. p � p−1 = 1x , p
−1 � p = 1y

5. (p−1)
−1

= p
6. p � (q � r) = (p � q) � r

I Proofs by induction: � is transpx= , −1 is transp =x 1x (!)

I Also: x , y : A, p, q : EqA(x , y), pq : EqEqA(x ,y)(p, q) ...

HoTT

Introduction

The Homotopy Interpretation [A+W+V]

I Type A: topological space

I Object a : A: point in topological space

I Object f : A→ B: continuous function

I Universe U : space of spaces

I Type family B : A→ U : a specific fibration E → A, where the
fiber of a : A is B(a), and

I E is the interpretation of ΣAB: the total space

I ΠAB: the space of sections of the fibration interpreting B

I EqA(a, a′): the space of paths from a to a′ in A

I Correct interpretation of EqA (in particular, transport) is
ensured by taking Kan fibrations (yielding homotopy
equivalent fibers of connected points)

HoTT

Introduction

Some Homotopy Levels [V]

I Level −1: prop(P) = Πx , y :P.EqP(x , y)

I Example: N0 is a proposition, prop(N0) also (!)

I Level 0: set(A) = Πx , y :A. prop(EqA(x , y))

I Example: N is a set, set(N) is a proposition

I Proved above: N is not a proposition (Peano’s 4-th axiom)

I Level 1: groupoid(A) = Πx , y :A. set(EqA(x , y))

I Examples: N0, N (silly, the hierarchy is cumulative)

I Without UA it is consistent to assume ΠA:U . set(A)

I With UA, U is not a set (U0 not a set, U1 not a groupoid, ...)

HoTT

Introduction

The Univalence Axiom [V]
I Level −2: Contr(A) = A× prop(A), A is contractible
I Examples: N1, Σx :B.EqB(x , b) for all b : B
I Fiber of f : A→ B over b : B is the type

Fibf (b) = Σx :A.EqB(f (x), b)

I Equivalence (function): isEquiv(f) = Πb:B.Contr(Fibf (b))
I Equivalence (types): (A ' B) = Σf :A→ B. isEquiv(f)
I Examples:

I Logical equivalence of propositions
I Bijections of sets
I The identity function A→ A is an equivalence, A ' A

I UA: for the canonical idtoEquiv : EqU (A,B)→ (A ' B),

ua : isEquiv(idtoEquiv)

HoTT

Introduction

More on UA

I Consequence of UA: EqU (A,B) ' (A ' B) inhabited

I Weak UA, wua : (A ' B)→ EqU (A,B)

I Informal: homotopy equivalent types in U can be identified

I Example: N and Z can be identified, don’t forget transport

I Is this good or bad, what means ‘can be identified’ here?

I Why not so in ZF? E.g., 0 = {}, Sn = n ∪ {n}, S ′n = {n}.
Two encodings of N, they disagree on 0 ∈ 2.

I Crucial: the language of type theory strikes a balance
I it is expressive (not too much encoding)
I is not too expressive (cannot express things it shouldn’t)

HoTT

Introduction

Consequences and Applications of UA/HoTT

I Function extensionality

I Description operator (define functions by their graph)

I The universe is not a set (EqU (N,N) refutes UIP)

I Practical: transport of structure and results between
equivalent types, without the need for ‘transportability
criteria’ [Bourbaki 4].
wiki/Equivalent definitions of mathematical structures

I Practical: formalizing homotopy theory synthetically
I Higher inductive types, example: the circle S1

I a point constructor base : S1

I a path constructor loop : base =S1 base
I induction + computation

I What is base =S1 base? (provably equivalent to Z)

I ...

https://en.wikipedia.org/wiki/Equivalent_definitions_of_mathematical_structures

HoTT

Introduction

Consumer Test of Logics
Logic Types ∀∃-domains Rem.

1-sorted FOL I n → B (opt. I n → I) I 1

k-sorted FOL [I1| · · · |Ik]n → B (. . .) I1, . . . , Ik 1

HOL T ::= B | I | (T→T) any T 1,3

DTT Π-types, U (universes),
inductive types

any A : U 2,4,5

1. Proofs are not first-class citizens.

2. Proofs are first-class citizens (part of object language).

3. Strength depends on comprehension axioms and similar
devices, e.g., ∃P. ∀x . (Px ↔ φ) or Hilbert’s ε.

4. Strength depends on inductive types and im/predicativity,
e.g., type ΠA:U0.A landing in universe U0/U1.

5. In DTT we often reason logically with ‘inhabited types’

	Introduction

